ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncollinear magnetism in distorted perovskite compounds

376   0   0.0 ( 0 )
 نشر من قبل Igor Solovyev
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using results of the band structure calculations in the local-spin-density approximation we demonstrate how the crystal distortions affect the magnetic structure of orthorhombically distorted perovskites leading to a non-collinear spin arrangement. Our results suggest that the non-collinearity of the spin magnetic moments, being generally small in La$M$O$_3$ series with $M$=Cr-Fe, is large in SrRuO$_3$.



قيم البحث

اقرأ أيضاً

The structural and magnetic properties of the face-centered cubic double perovskite Ba2MnWO6 were investigated using neutron powder diffraction, DC-magnetometry, muon spin relaxation and inelastic neutron scattering. Ba2MnWO6 undergoes Type II long-r ange antiferromagnetic ordering at a Neel temperature of 8(1) K with a frustration index, f = 8. Inelastic neutron scattering was used to identify the magnetic coupling constants J1 and J2, which were found to equal -0.080 meV and -0.076 meV respectively. This indicated that both of the magnetic coupling constants were antiferromagnetic with similar magnitudes, which is in contrast to other known 3d metal double perovskites Ba2MWO6. Above the Neel temperature, muon spin relaxation measurements and inelastic neutron scattering techniques identify a short-range correlated magnetic state that is similar to that observed in the archetypical face-centered cubic lattice antiferromagnet MnO.
We use density functional theory to calculate the structure, band-gap and magnetic properties of oxygen-deficient SrTi$_{1-x-y}$Fe$_x$Co$_y$O$_{3-delta}$ with x = y = 0.125 and ${delta}$ = (0,0.125,0.25). The valence and the high or low spin-states o f the Co and Fe ions, as well as the lattice distortion and the band-gap, depend on the oxygen deficiency, the locations of the vacancies, and on the direction of the Fe-Co axis. A charge redistribution that resembles a self-regulatory response lies behind the valence spin-state changes. Ferromagnetism dominates, and both the magnetization and the band gap are greatest at ${delta}$ = 0.125. This qualitatively mimics the previously reported magnetization measured for SrTiFeO$_{3-delta}$, which was maximum at an intermediate deposition pressure of oxygen.
The temperature dependent stability of the magnetic phases of FeRh were investigated by means of total energy calculations with magnetic disorder treated within the uncompensated disordered local moment (uDLM) approach. In addition, Monte Carlo simul ations based on the extended Heisenberg model have been performed, using exchange coupling parameters obtained rom first principles. The crucial role and interplay of two factors in the metamagnetic transition in FeRh has been revealed, namely the dependence of the Fe-Fe exchange coupling parameters on the temperature-governed degree of magnetic disorder in the system and the stabilizing nature of the induced magnetic moment on Rh-sites. An important observation is the temperature dependence of these two competing factors.
Fe$_{3-x}$GeTe$_2$ is a layered van der Waals magnetic material with a relatively high ordering temperature and large anisotropy. While most studies have concluded the interlayer ordering to be ferromagnetic, there have also been reports of interlaye r antiferromagnetism in Fe$_{3-x}$GeTe$_2$. Here, we investigate the interlayer magnetic ordering by neutron diffraction experiments, scanning tunneling microscopy (STM) and spin-polarized STM measurements, density functional theory plus U calculations and STM simulations. We conclude that the layers of Fe$_{3-x}$GeTe$_2$ are coupled ferromagnetically and that in order to capture the magnetic and electronic properties of Fe$_{3-x}$GeTe$_2$ within density functional theory, Hubbard U corrections need to be taken into account.
Rotation of MO6 (M = transition metal) octahedra is a key determinant of the physical properties of perovskite materials. Therefore, tuning physical properties, one of the most important goals in condensed matter research, may be accomplished by cont rolling octahedral rotation (OR). In this study, it is demonstrated that OR can be driven by an electric field in Sr$_2$RuO$_4$. Rotated octahedra in the surface layer of Sr$_2$RuO$_4$ are restored to the unrotated bulk structure upon dosing the surface with K. Theoretical investigation shows that OR in Sr$_2$RuO$_4$ originates from the surface electric field, which can be tuned via the screening effect of the overlaid K layer. This work establishes not only that variation in the OR angle can be induced by an electric field, but also provides a way to control OR, which is an important step towards in situ control of the physical properties of perovskite oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا