ﻻ يوجد ملخص باللغة العربية
We study stochastic differential games of jump diffusions, where the players have access to inside information. Our approach is based on anticipative stochastic calculus, white noise, Hida-Malliavin calculus, forward integrals and the Donsker delta functional. We obtain a characterization of Nash equilibria of such games in terms of the corresponding Hamiltonians. This is used to study applications to insider games in finance, specifically optimal insider consumption and optimal insider portfolio under model uncertainty.
This paper is concerned with a Stackelberg stochastic differential game on a finite horizon in feedback information pattern. A system of parabolic partial differential equations is obtained at the level of Hamiltonian to give the verification theorem
We investigate a two-player zero-sum differential game with asymmetric information on the payoff and without Isaacs condition. The dynamics is an ordinary differential equation parametrised by two controls chosen by the players. Each player has a pri
The paper studies the open-loop saddle point and the open-loop lower and upper values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for short) differential games with deterministic coefficients. It derives a
Stochastic differential games have been used extensively to model agents competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed mac
We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynam