ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a Stackelberg stochastic differential game on a finite horizon in feedback information pattern. A system of parabolic partial differential equations is obtained at the level of Hamiltonian to give the verification theorem of the feedback Stackelberg equilibrium. As an example, a linear quadratic Stackelberg stochastic differential game is investigated. Riccati equations are introduced to express the feedback Stackelberg equilibrium, analytical and numerical solutions to these Riccati equations are discussed in some special cases.
We study stochastic differential games of jump diffusions, where the players have access to inside information. Our approach is based on anticipative stochastic calculus, white noise, Hida-Malliavin calculus, forward integrals and the Donsker delta f
This paper studies a stochastic robotic surveillance problem where a mobile robot moves randomly on a graph to capture a potential intruder that strategically attacks a location on the graph. The intruder is assumed to be omniscient: it knows the cur
We study a class of deterministic finite-horizon two-player nonzero-sum differential games where players are endowed with different kinds of controls. We assume that Player 1 uses piecewise-continuous controls, while Player 2 uses impulse controls. F
Stochastic differential games have been used extensively to model agents competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed mac
The paper studies the open-loop saddle point and the open-loop lower and upper values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for short) differential games with deterministic coefficients. It derives a