ﻻ يوجد ملخص باللغة العربية
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed with the hadron beam of the CERN T9 experimental hall for the direct detection configuration. The tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.
The use of a nonhomogeneous aerogel radiator, i.e. one consisting of layers with different refractive indices, has been shown to improve the resolution of the Cherenkov angle measured with a proximity focusing RICH detector. In order to obtain furthe
The Backward Angle Neutron Detector (BAND) of CLAS12 detects neutrons emitted at backward angles of $155^circ$ to $175^circ$, with momenta between $200$ and $600$ MeV/c. It is positioned 3 meters upstream of the target, consists of $18$ rows and $5$
New generation high-energy physics experiments demand high precision tracking and accurate measurements of a large number of particles produced in the collisions of lementary particles and heavy-ions. Silicon-tungsten (Si-W) calorimeters provide the
We present a conceptual design for a polarized $^3$He target for Jefferson Labs CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for