ترغب بنشر مسار تعليمي؟ اضغط هنا

Conceptual Design of a Polarized 3He Target for the CLAS12 Spectrometer

96   0   0.0 ( 0 )
 نشر من قبل James Maxwell
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a conceptual design for a polarized $^3$He target for Jefferson Labs CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell inside the CLAS12 5 T solenoid. By transferring this gas to a 20 cm long, 5 K target cell, a target thickness of $3 times 10^{21}$ $^3$He/cm$^2$ will be produced, reaching the detectors specified maximum luminosity with a beam current of 2.5 $mu A$.



قيم البحث

اقرأ أيضاً

77 - Igor Strakovsky 2020
The Kaon Production Target (KPT) is an important component of the proposed K-Long facility which will be operated in JLab Hall~D, targeting strange baryon and meson spectroscopy. In this note we present a conceptual design for the Be-target assembly for the planned K-Long beam line, which will be used along with the GlueX spectrometer in its standard configuration for the proposed experiments. The high quality 12-GeV CEBAF electron beam enables production of a K$_L$ flux at the GlueX target on the order of $1times 10^4 K_L/sec$, which exceeds the K$_L$ flux previously attained at SLAC by three orders of magnitude. An intense K$_L$ beam would open a new window of opportunity not only to locate missing resonances in the strange hadron spectrum, but also to establish their properties by studying different decay channels systematically. The most important and radiation damaging background in K$_L$ production is due to neutrons. The Monte Carlo simulations for the proposed conceptual design of KPT show that the resulting neutron and gamma flux lead to a prompt radiation dose rate for the KLF experiment that is below the JLab Radiation Control Department radiation dose rate limits in the experimental hall and at the site boundary, and will not substantially affect the performance of the spectrometer.
The neutron polarization of the NG-C beamline at the NIST Center for Neutron Research was measured as part of the aCORN neutron beta decay experiment. Neutron transmission through a polarized 3He spin filter cell was recorded while adiabatic fast pas sage (AFP) nuclear magnetic resonance (NMR) reversed the polarization direction of the 3He in an eight-step sequence to account for drifts. The dependence of the neutron transmission on the spin filter direction was used to calculate the neutron polarization. The time dependent transmission was fit to a model which included the neutron spectrum, and 3He polarization losses from spin relaxation and AFP-NMR. The polarization of the NG-C beamline was found to be ${mid}P_mathrm{n}{mid} leq 4times 10^{-4}$ with 90 % confidence.
The projected performance and detector configuration of nEXO are described in this pre-Conceptual Design Report (pCDR). nEXO is a tonne-scale neutrinoless double beta ($0 ubetabeta$) decay search in $^{136}$Xe, based on the ultra-low background liqui d xenon technology validated by EXO-200. With $simeq$ 5000 kg of xenon enriched to 90% in the isotope 136, nEXO has a projected half-life sensitivity of approximately $10^{28}$ years. This represents an improvement in sensitivity of about two orders of magnitude with respect to current results. Based on the experience gained from EXO-200 and the effectiveness of xenon purification techniques, we expect the background to be dominated by external sources of radiation. The sensitivity increase is, therefore, entirely derived from the increase of active mass in a monolithic and homogeneous detector, along with some technical advances perfected in the course of a dedicated R&D program. Hence the risk which is inherent to the construction of a large, ultra-low background detector is reduced, as the intrinsic radioactive contamination requirements are generally not beyond those demonstrated with the present generation $0 ubetabeta$ decay experiments. Indeed, most of the required materials have been already assayed or reasonable estimates of their properties are at hand. The details described herein represent the base design of the detector configuration as of early 2018. Where potential design improvements are possible, alternatives are discussed. This design for nEXO presents a compelling path towards a next generation search for $0 ubetabeta$, with a substantial possibility to discover physics beyond the Standard Model.
118 - K. Murray , J. Dilling , R. Gornea 2019
The search for neutrinoless double beta decay requires increasingly advanced methods of background reduction. A bold approach to solving this problem, in experiments using Xe-136, is to extract and identify the daughter Ba-136 ion produced by double beta decay. Tagging events in this manner allows for a virtually background-free verification of double beta decay signals. Various approaches are being pursued by the nEXO collaboration to achieve Ba-tagging. A Multi-Reflection Time-of-Flight Mass Spectrometer (MR TOF) has been designed and optimized as one of the ion-identification methods, where it will investigate the ion-extraction efficiency, as well as provide further identification of the Ba isotope. The envisioned mode of operation allows the MR TOF to achieve a quickly adjustable mass-range and resolution, with simulations suggesting that a mass-resolving power of 140,000 is within reach. This work will discuss the MR TOF design and the methods employed to simulate and optimize it.
118 - T. Ohta , M. Fujiwara , K. Fukuda 2011
A portable NMR polarimeter system has been developed to measure the polarization of a polarized Hydrogen-Deuteride (HD) target for hadron photoproduction experiments at SPring-8. The polarized HD target is produced at the Research Center for Nuclear Physics (RCNP), Osaka university and is transported to SPring-8. The HD polarization should be monitored at both places. We have constructed the portable NMR polarimeter system by replacing the devices in the conventional system with the software system with PCI eXtensions for Instrumentation (PXI). The weight of the NMR system is downsized from 80 kg to 7 kg, and the cost is reduced to 25%. We check the performance of the portable NMR polarimeter system. The signal-to-noise (S/N) ratio of the NMR signal for the portable system is about 50% of that for the conventional NMR system. This performance of the portable NMR system is proved to be compatible with the conventional NMR system for the polarization measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا