ﻻ يوجد ملخص باللغة العربية
It has long been expected that the spectrum of hadrons in QCD would be far richer and extensive than experiment has so far revealed. While there have been experimental hints of this richness for some time, it is really only in the last few years that dramatic progress has been seen in the exploration both experimentally and in calculations on the lattice. Precision studies enabled by new technology both with detectors and high performance computations are converging on an understanding of the spectrum in strong coupling QCD. These methodologies are laying the foundation for a decade of potential discovery that electro and photoproduction experiments at Jefferson Lab, which when combined with key results on $B$ and charmonium decays from both $e^+e^-$ and $pp$ colliders, should turn mere impressions of the light meson spectrum into a high definition picture.
We study the $p$-wave polarization operator of the $rho$-meson due to $rho N$ interactions via the $N^*$ (1720) and $Delta (1905)$ resonances and compute the corresponding production rate for $e^+e^-$-pairs at finite temperature and baryon density. A
Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affecte
Recent developments in theoretical modeling and in computational power have allowed us to make significant progress on a goal not achieved yet in nuclear theory: a fully microscopic theory of nuclear fission. The complete microscopic description rema
Eta-mesic nucleus or the quasibound nuclear state of an eta ($eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since i
We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of BNL RHIC ($sqrt{s_{rm NN}}=0.2$ TeV), CERN LHC ($sqrt{s_{rm NN}}=2.76$-$8.8$ TeV), and proposed future ha