ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Fission Dynamics: Past, Present, Needs, and Future

383   0   0.0 ( 0 )
 نشر من قبل Aurel Bulgac
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent developments in theoretical modeling and in computational power have allowed us to make significant progress on a goal not achieved yet in nuclear theory: a fully microscopic theory of nuclear fission. The complete microscopic description remains a computationally demanding task, but the information that can be provided by current calculations can be extremely useful to guide and constrain phenomenological approaches. First, a truly microscopic framework that can describe the real-time dynamics of the fissioning system can justify or rule out assumptions and approximations incompatible with an accurate quantum treatment or with our understanding of the inter nucleon interactions. Second, the microscopic approach can be used to obtain trends such as: the excitation energy sharing mechanism between fission fragments (FFs) with increasing excitation energy of the fissioning system, the angular momentum content of the FFs, or even to compute observables that cannot be otherwise calculated in phenomenological approaches or even measured, as in the case of astronomical environments. Merely the characterization of the trends would be of great importance for various application. We present here arguments that a truly microscopic approach to fission does not support the assumption of adiabaticity of the large amplitude collective motion in fission, particularly starting from the outer saddle down to the scission configuration.

قيم البحث

اقرأ أيضاً

58 - Q. Haider , L. C. Liu 2015
Eta-mesic nucleus or the quasibound nuclear state of an eta ($eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since i ts prediction in 1986. In this paper, we review and analyze in great detail the models of the fundamental $eta$--nucleon interaction leading to the formation of an $eta$--mesic nucleus, the methods used in calculating the properties of a bound $eta$, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the $eta$--mesic nucleus $^{25}$Mg$_{eta}$ and other promising experimental results, future direction in searching for more $eta$--mesic nuclei is suggested.
There has been much recent interest in nuclear fission, due in part to a new appreciation of its relevance to astrophysics, stability of superheavy elements, and fundamental theory of neutrino interactions. At the same time, there have been important developments on a conceptual and computational level for the theory. The promising new theoretical avenues were the subject of a workshop held at the University of York in October 2019; this report summarises its findings and recommendations.
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principledriven methodologies to model complex chemical and materials processes. Over the last few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach and outlook.
175 - Leman Akoglu 2021
Anomaly mining is an important problem that finds numerous applications in various real world domains such as environmental monitoring, cybersecurity, finance, healthcare and medicine, to name a few. In this article, I focus on two areas, (1) point-c loud and (2) graph-based anomaly mining. I aim to present a broad view of each area, and discuss classes of main research problems, recent trends and future directions. I conclude with key take-aways and overarching open problems.
In this talk I review the history of models of strong decays, from the original model through applications to charmonium, light and charmed mesons, glueballs and hybrids. Our current rather limited understanding of the QCD mechanism of strong decays is stressed. Regarding current and future applications of strong decay models, we note that in certain channels the very strong coupling predicted between |qqbar> basis states and the two-meson continuum may lead to strongly mixed states and perhaps molecular two-meson bound states. The relevance to the D_{sJ}*(2317) is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا