ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Sensitivity of Graphene/Silicon Heterojunction Photodetectors

323   0   0.0 ( 0 )
 نشر من قبل Max C. Lemme
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the optical properties of two-dimensional (2D) Schottky photodiode heterojunctions made of chemical vapor deposited (CVD) graphene on n- and p-type Silicon (Si) substrates. Much better rectification behavior is observed from the diodes fabricated on n- Si substrates in comparison with the devices on p-Si substrates in dark condition. Also, graphene/n-Si photodiodes show a considerable responsivity of 270 mA/W within the silicon spectral range in DC reverse bias condition. The present results are furthermore compared with that of a molybdenum disulfide (MoS2)/p-type silicon photodiodes.



قيم البحث

اقرأ أيضاً

53 - V. Ryzhii , M. Ryzhii , T. Otsuji 2021
We analyze the modulation characteristics of the uncooled terahertz (THz) and infrared (IR) detectors using the variation of the density and effective temperature of the two-dimensional electron-hole plasma in uniform graphene layers (GLs) and perfor ated graphene layers (PGLs) due to the absorption of THz and IR radiation. The performance of the photodetectors (both the GL-photoresistor and the PGL-based barrier photodiodes) are compared. Their characteristics are also compared with the GL reverse-biased photodiodes. The obtained results allow to evaluate the ultimate modulation frequencies of these photodetectors and can be used for their optimization.
Considering the difference of energy bands in graphene and silicene, we put forward a new model of the graphene-silicene-graphene (GSG) heterojunction. In the GSG, we study the valley polarization properties in a zigzag nanoribbon in the presence of an external electric field. We find the energy range associated with the bulk gap of silicene has a valley polarization more than 95%. Under the protection of the topological edge states of the silicene, the valley polarization remains even the small non-magnetic disorder is introduced. These results have certain practical significance in applications for future valley valve.
190 - V. Ryzhii , T. Otsuji , M. Ryzhii 2014
We propose and evaluate the vertical cascade terahertz and infrared photodetectors based on multiple-graphene-layer (GL) structures with thin tunnel barrier layers (made of tungsten disulfide or related materials). The photodetector operation is asso ciated with the cascaded radiative electron transitions from the valence band in GLs to the conduction band in the neighboring GLs (interband- and inter-GL transitions). We calculate the spectral dependences of the responsivity and detectivity for the vertical cascade interband GL- photodetectors (I-GLPDs) with different number of GLs and doping levels at different bias voltages in a wide temperature range. We show the possibility of an effective manipulation of the spectral characteristics by the applied voltage. The spectral characteristics depend also on the GL doping level that opens up the prospects of using I-GLPDs in the multi-color systems. The advantages of I-GLPDs under consideration are associated with their sensitivity to the normal incident radiation, weak temperature dependence of the dark current as well as high speed of operation. The comparison of the proposed I-GLDs with the quantum-well intersubband photodectors demonstrates the superiority of the former, including a better detectivity at room temperature and a higher speed. The vertical cascade I-GLDs can also surpass the lateral p-i-n GLDs in speed.
Graphene is an ideal material for hot-electron bolometers, due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum dot constrictions yields detectors with extraordinarily high intrinsic responsivity, high er than 1x10^9 V/W at 3K. The sensing mechanism is bolometric in nature: the quantum confinement gap causes a strong dependence of the electrical resistance on the electron temperature. Here we show that this quantum confinement gap does not impose a limitation on the photon energy for light detection and these quantum dot bolometers work in a very broad spectral range, from terahertz, through telecom to ultraviolet radiation, with responsivity independent of wavelength. We also measure the power dependence of the response. Although the responsivity decreases with increasing power, it stays higher than 1x10^8 V/W in a wide range of absorbed power, from 1 pW to 0.4 nW.
We report vertically-illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the PDs are integrated with an optical cavity, resulting in multiple reflections at resonance, and enhanced absorption in graphene. Our devices have wavelength-dependent photoresponse with external (internal) responsivity~20mA/W (0.25A/W). The spectral-selectivity may be further tuned by varying the cavity resonant wavelength. Our devices pave the way for developing high responsivity hybrid graphene-Si free-space illuminated PDs for free-space optical communications, coherence optical tomography and light-radars
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا