ﻻ يوجد ملخص باللغة العربية
Considering the difference of energy bands in graphene and silicene, we put forward a new model of the graphene-silicene-graphene (GSG) heterojunction. In the GSG, we study the valley polarization properties in a zigzag nanoribbon in the presence of an external electric field. We find the energy range associated with the bulk gap of silicene has a valley polarization more than 95%. Under the protection of the topological edge states of the silicene, the valley polarization remains even the small non-magnetic disorder is introduced. These results have certain practical significance in applications for future valley valve.
Twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (h-BN) substrate can exhibit an anomalous Hall effect at 3/4 filling due to the spontaneous valley polarization in valley resolved moire bands with opposite Chern number [Science 367
The electron transport of different conical valleys is investigated in graphene with extended line-defects. Intriguingly, the electron with a definite incident angle can be completely modulated into one conical valley by a resonator which consists of
We study theoretically interaction of a bilayer graphene with a circularly polarized ultrafast optical pulse of a single oscillation at an oblique incidence. The normal component of the pulse breaks the inversion symmetry of the system and opens up a
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol
Effects of disorder and valley polarization in graphene are investigated in the quantum Hall regime. We find anomalous localization properties for the lowest Landau level (LL), where disorder can induce wavefunction delocalization (instead of localiz