ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of screw dislocations: a generalised minimising-movements scheme approach

74   0   0.0 ( 0 )
 نشر من قبل Marco Morandotti
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The gradient flow structure of the model introduced in [CG99] for the dynamics of screw dislocations is investigated by means of a generalised minimising-movements scheme approach. The assumption of a finite number of available glide directions, together with the maximal dissipation criterion that governs the equations of motion, results into solving a differential inclusion rather than an ODE. This paper addresses how the model in [CG99] is connected to a time-discrete evolution scheme which explicitly confines dislocations to move each time step along a single glide direction. It is proved that the time-continuous model in [CG99] is the limit of these time-discrete minimising-movement schemes when the time step converges to 0. The study presented here is a first step towards a generalisation of the setting in [AGS08, Chap. 2 and 3] that allows for dissipations which cannot be described by a metric.

قيم البحث

اقرأ أيضاً

Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far field of these dislocations is universal and classified by an integer strength $ u$ that characterizes the winding of magnetic moments. We demonstrate that a rich variety of dislocation-core structures can be realized even for the same strength $ u$. In particular, the magnetization at the core can be either smooth or singular. We present a specific example with $ u = 1$ for which the core is composed of a chain of singular Bloch points. In general, screw dislocations carry a non-integer but finite skyrmion charge so that they can be efficiently manipulated by spin currents.
We investigate the large time behavior of $N$ particles restricted to a smooth closed curve in $mathbb{R}^d$ and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz $s$-energy with $s>1.$ We show that regardless of the ir initial positions, for all $N$ and time $t$ large, their normalized Riesz $s$-energy will be close to the $N$-point minimal possible. Furthermore, the distribution of such particles will be close to uniform with respect to arclength measure along the curve.
102 - Xin Zhang , Kaige Hu , Yifei Li 2019
Van der Waals (vdW) layered transition metal dichalcogenides (TMDCs) materials are emerging as one class of quantum materials holding novel optical and electronic properties. In particular, the bandgap tunability attractive for nanoelectronics techno logy have been observed up to 1.1 eV when applying dielectric screening or grain boundary engineering. Here we present the experimental observation of bandgap closing at the center of the screw dislocation-driven WS2 spiral pyramid by means of scanning tunneling spectroscopy, which is validated by first-principle calculations. The observed giant bandgap modulation is attributed to the presence of dangling bonds induced by the W-S broken and the enhanced localized stress in the core of the dislocation. Achieving this metallic state and the consequent vertical conducting channel presents a pathway to 3D-interconnected vdW heterostructure devices based on emergent semiconducting TMDCs.
The X-cube model, a prototypical gapped fracton model, has been shown to have a foliation structure. That is, inside the 3+1D model, there are hidden layers of 2+1D gapped topological states. A screw dislocation in a 3+1D lattice can often reveal non trivial features associated with a layered structure. In this paper, we study the X-cube model on lattices with screw dislocations. In particular, we find that a screw dislocation results in a finite change in the logarithm of the ground state degeneracy of the model. Part of the change can be traced back to the effect of screw dislocations in a simple stack of 2+1D topological states, hence corroborating the foliation structure in the model. The other part of the change comes from the induced motion of fractons or sub-dimensional excitations along the dislocation, a feature absent in the stack of 2+1D layers.
Pinning interaction between a screw dislocation and a void in fcc copper is investigated by means of molecular dynamics simulation. A screw dislocation bows out to undergo depinning on the original glide plane at low temperatures, where the behavior of the depinning stress is consistent with that obtained by a continuum model. If the temperature is higher than 300 K, the motion of a screw dislocation is no longer restricted to a single glide plane due to cross slip on the void surface. Several depinning mechanisms that involve multiple glide planes are found. In particular, a depinning mechanism that produces an intrinsic prismatic loop is found. We show that these complex depinning mechanisms significantly increase the depinning stress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا