ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak measurement with a coherent state pointer and its implementation in optomechanical system

69   0   0.0 ( 0 )
 نشر من قبل Gang Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak measurement with a coherent state pointer and in combination with an orthogonal postselection can lead to a surprising amplification effect, and we give a fire-new physical mechanism about the weak measurement in order to understand this effect. Moreover, this physical mechanism is a general result and based on it, we present a scheme of optomechanical system to implement weak measurement amplification on an orthogonal postselection.



قيم البحث

اقرأ أيضاً

103 - Gang Li , Tao Wang , Ming-Yong Ye 2015
Weak measurement [1,19] combined with quantum delayed-choice experiment that use quantum beam splitter instead of the beam splitter give rise to a surprising amplification effect, i.e., counterintuitive negative amplification effect. We show that thi s effect is caused by the wave and particle behaviours of the system to be and cant be explained by a semiclassical wave theory, due to the entanglement of the system and the ancilla in quantum beam splitter. The amplification mechanism about wave-particle duality in quantum mechanics lead us to a scheme for implementation of weak measurement in optomechanical system.
189 - Jun-Hao Liu , Ya-Fei Yu , 2018
We study the nonreciprocal transmission of a single-photon in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, the mechanical resonator (MR) is excited by a weak coherent driv ing, and the signal photon is made up of a sequence of pulses with exactly one photon per pulse. We find that, if the input state is a single-photon state, it is insufficient to study the nonreciprocity only from the perspective of the transmission spectrums, since the frequencies where the nonreciprocity happens are far away from the peak frequency of the single-photon. So we show the nonreciprocal transmission behavior by comparing the spectrums of the input and output fields. In our system, we can achieve a transformation of the signal transmission from unidirectional isolation to unidirectional amplification in the single-photon level by changing the amplitude of the weak coherent driving. The effects of the mechanical thermal noise on the single-photon nonreciprocal transmission are also discussed.
159 - Lars M. Johansen 2004
The exact conditions on valid pointer states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any pointer state with vanishing probability current density. This condition is found both for weak measur ements of noncommuting observables and for $c$-number observables. In addition, the interaction between pointer and object must be sufficiently weak. There is no restriction on the purity of the pointer state. For example, a thermal pointer state is fully valid.
We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, c ontinuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory.
97 - Philipp Stammer 2020
We quantify the disturbance of a quantum state undergoing a sequence of observations, and particularly focus on a weak measurement followed by post-selection and compare these results to the projective counterpart. Taking into account the distinguish ability of both, the system and the device, we obtain the exact trade-off between the system state disturbance and the change of the device pointer state. We show that for particular post-selection procedures the coupling strength between the system and the device can be significantly reduced without loosing measurement sensitivity, which is directly transferred to a reduced state disturbance of the system. We observe that a weak measurement alone does not provide this advantage but only in combination with post-selection a significant improvement in terms of increased measurement sensitivity and reduced state disturbance is found. We further show that under realistic experimental conditions this state disturbance is small, whereas the exact post-selection probability is considerably larger than the approximate value given by the overlap of the initial and final state when neglecting the system state disturbance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا