ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllable single-photon nonreciprocal transmission in a cavity optomechanical system with a weak coherent driving

190   0   0.0 ( 0 )
 نشر من قبل Zhi-Ming Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the nonreciprocal transmission of a single-photon in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, the mechanical resonator (MR) is excited by a weak coherent driving, and the signal photon is made up of a sequence of pulses with exactly one photon per pulse. We find that, if the input state is a single-photon state, it is insufficient to study the nonreciprocity only from the perspective of the transmission spectrums, since the frequencies where the nonreciprocity happens are far away from the peak frequency of the single-photon. So we show the nonreciprocal transmission behavior by comparing the spectrums of the input and output fields. In our system, we can achieve a transformation of the signal transmission from unidirectional isolation to unidirectional amplification in the single-photon level by changing the amplitude of the weak coherent driving. The effects of the mechanical thermal noise on the single-photon nonreciprocal transmission are also discussed.


قيم البحث

اقرأ أيضاً

Photon blockade is an effective way to generate single photon, which is of great significance in quantum state preparation and quantum information processing. Here we investigate the statistical properties of photons in a double-cavity optomechanical system with nonreciprocal coupling, and explore the photon blockade in the weak and strong coupling regions respectively. To achieve the strong photon blockade, we give the optimal parameter relations under different blockade mechanisms. Moreover, we find that the photon blockades under their respective mechanisms exhibit completely different behaviors with the change of nonreciprocal coupling, and the perfect photon blockade can be achieved without an excessively large optomechanical coupling, i.e., the optomechanical coupling is much smaller than the mechanical frequency, which breaks the traditional cognition. Our proposal provides a feasible and flexible platform for the realization of single-photon source.
204 - Jun-Hao Liu , Ya-Fei Yu , 2019
We study the nonreciprocal transmission and the fast-slow light effects in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, both the two modes are driven simultaneously by a s trong pump field and a weak signal field. We find that when the intrinsic photon loss of the cavity is equal to the external coupling loss of the cavity, the system reveals a nonreciprocal transmission of the signal fields. However, when the intrinsic photon loss is much less than the external coupling loss, the nonreciprocity about the transmission properties almost disappears, and the nonreciprocity is shown in the group delay properties of the signal fields, and the system exhibits a nonreciprocal fast-slow light propagation phenomenon.
Quantum entanglement, a key element for quantum information is generated with a cavity-magnomechanical system. It comprises of two microwave cavities, a magnon mode and a vibrational mode, and the last two elements come from a YIG sphere trapped in t he second cavity. The two microwave cavities are connected by a superconducting transmission line, resulting in a linear coupling between them. The magnon mode is driven by a strong microwave field and coupled to cavity photons via magnetic dipole interaction, and at the same time interacts with phonons via magnetostrictive interaction. By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement. By using current experimental parameters for numerical simulation, it is hoped that our results may reveal a new strategy to built quantum resources for the realization of noise-tolerant quantum processors, chiral networks, and so on.
154 - Jun-Hao Liu , Ya-Fei Yu , 2018
We investigate the routing of a single-photon in a modulated cavity optomechanical system, in which the cavity is driven by a strong coupling field, and the mechanical resonator (MR) is modulated with a weak coherent field. We show that, when there i s no a weak coherent field modulating the MR, the system cannot act as a single-photon router, since the signal will be completely covered by the quantum and thermal noises. By introducing the weak coherent field, we can achieve the routing of the single-photon by adjusting the frequency of the weak coherent field, and the system can be immune to the quantum and thermal noises.
106 - Zhihai Wang , Lei Du , Yong Li 2019
We study the controllable single-photon scattering via a one-dimensional waveguide which is coupled to a two-level emitter and a single-mode cavity simultaneously. The emitter and the cavity are also coupled to each other and form a three-level syste m with cyclic transitions within the zero- and single-excitation subspaces. As a result, the phase of emitter-cavity coupling strength serves as a sensitive control parameter. When the emitter and cavity locate at the same point of the waveguide, we demonstrate the Rabi splitting and quasidark-state--induced perfect transmission for the incident photons. More interestingly, when they locate at different points of the waveguide, a controllable nonreciprocal transmission can be realized and the non-reciprocity is robust to the weak coupling between the system and environment. Furthermore, we demonstrate that our theoretical model is experimentally feasible with currently available technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا