ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic structure of light nuclei

89   0   0.0 ( 0 )
 نشر من قبل Saori Pastore
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Saori Pastore




اسأل ChatGPT حول البحث

The present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A $le$ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.



قيم البحث

اقرأ أيضاً

299 - Sonia Bacca , Saori Pastore 2014
Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated stru cture properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.
We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary cal culations on the Coulomb sum rule for 4He are discussed.
118 - R. Bijker , F. Iachello 2019
We review recent studies of the cluster structure of light nuclei within the framework of the algebraic cluster model (ACM) for nuclei composed of k alpha-particles and within the framework of the cluster shell model (CSM) for nuclei composed of k al pha-particles plus x additional nucleons. The calculations, based on symmetry considerations and thus for the most part given in analytic form, are compared with experiments in light cluster nuclei. The comparison shows evidence for Z_2, D_{3h} and T_d symmetry in the even-even nuclei 8Be (k=2), 12C (k=3) and 16O (k=4), respectively, and for the associated double groups Z_2 and D_{3h} in the odd nuclei 9Be, 9B (k=2, x=1) and 13C (k=3, x=1), respectively.
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the $^3$He nucleus. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions (GPDs). In this way, the distribution of partons in the transverse plane can be obtained. As an example, coherent deeply virtual Compton scattering (DVCS) off $^3$He nuclei, important to access the neutron GPDs, will be discussed. In Impulse Approximation (IA), the sum of two GPDs of $^3$He, $H$ and $E$, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD $tilde H$ of $^3$He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for $^3$He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized $^3$He. The calculation of the Sivers and Collins single spin asymmetries for $^3$He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.
We propose to study the partonic structure of $^4$He by measuring the Beam Spin Asymmetry (BSA) in coherent Deeply Virtual Compton Scattering (DVCS) and the differential cross-section of the Deeply Virtual Meson Production (DVMP) of the $phi$. Despit e its simple structure, a light nucleus such as $^4$He has a density and a binding energy comparable to that of heavier nuclei. Therefore, by studying $^4$He nucleus, one can learn typical features of the partonic structure of atomic nuclei. The combination of CLAS12 and the ALERT detector provides a unique opportunity to study both the quark and gluon structure of a dense light nucleus. Coherent exclusive DVCS off $^4$He will probe the transverse spatial distribution of quarks in the nucleus as a function of the quarks longitudinal momentum fraction, $x$. In parallel, the average spatial transverse gluon density of the $^4$He nucleus will be extracted within a GPD framework using the measured longitudinal cross-section for coherent $phi$ production in a similar range of $x$. Additionally, threshold effects of $phi$ production can be explored by exploiting the ALERT detectors large acceptance for low $|t|$ events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا