ﻻ يوجد ملخص باللغة العربية
We propose to study the partonic structure of $^4$He by measuring the Beam Spin Asymmetry (BSA) in coherent Deeply Virtual Compton Scattering (DVCS) and the differential cross-section of the Deeply Virtual Meson Production (DVMP) of the $phi$. Despite its simple structure, a light nucleus such as $^4$He has a density and a binding energy comparable to that of heavier nuclei. Therefore, by studying $^4$He nucleus, one can learn typical features of the partonic structure of atomic nuclei. The combination of CLAS12 and the ALERT detector provides a unique opportunity to study both the quark and gluon structure of a dense light nucleus. Coherent exclusive DVCS off $^4$He will probe the transverse spatial distribution of quarks in the nucleus as a function of the quarks longitudinal momentum fraction, $x$. In parallel, the average spatial transverse gluon density of the $^4$He nucleus will be extracted within a GPD framework using the measured longitudinal cross-section for coherent $phi$ production in a similar range of $x$. Additionally, threshold effects of $phi$ production can be explored by exploiting the ALERT detectors large acceptance for low $|t|$ events.
We review recent studies of the cluster structure of light nuclei within the framework of the algebraic cluster model (ACM) for nuclei composed of k alpha-particles and within the framework of the cluster shell model (CSM) for nuclei composed of k al
The present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A $le$ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and thre
The investigation of the d, 3H and 3He spin structure has been performed at the RIKEN(Japan) accelerator research facility and VBLHEP(JINR) using both polarized and unpolarized deuteron beams. The experimental results on the analyzing powers studies
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the $^3$He nucleus. The 3D structure in coordinate space
A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased consider