ﻻ يوجد ملخص باللغة العربية
The zeta function of an integral lattice $Lambda$ is the generating function $zeta_{Lambda}(s) = sumlimits_{n=0}^{infty} a_n n^{-s}$, whose coefficients count the number of left ideals of $Lambda$ of index $n$. We derive a formula for the zeta function of $Lambda_1 otimes Lambda_2$, where $Lambda_1$ and $Lambda_2$ are $mathbb{Z}$-orders contained in finite-dimensional semisimple $mathbb{Q}$-algebras that satisfy a locally coprime condition. We apply the formula obtained above to $mathbb{Z}S otimes mathbb{Z}T$ and obtain the zeta function of the adjacency algebra of the direct product of two finite association schemes $(X,S)$ and $(Y,T)$ in several cases where the $mathbb{Z}$-orders $mathbb{Z}S$ and $mathbb{Z}T$ are locally coprime and their zeta functions are known.
The extending structures and unified products for Malcev algebras are developed. Some special cases of unified products such as crossed products and matched pair of Malcev algebras are studied. It is proved that the extending structures can be classi
In this paper we aim to characterize association schemes all of whose symmetric fusion schemes have only integral eigenvalues, and classify those obtained from a regular action of a finite group by taking its orbitals.
We show that the tensor product of two cyclic $A_infty$-algebras is, in general, not a cyclic $A_infty$-algebra, but an $A_infty$-algebra with homotopy inner product. More precisely, we construct an explicit combinatorial diagonal on the pairahedra,
In [19] it was explained how one can naturally associate a Deitmar scheme (which is a scheme defined over the field with one element, $mathbb{F}_1$) to a so-called loose graph (which is a generalization of a graph). Several properties of the Deitmar
In this paper, we establish Composition-Diamond lemma for tensor product $k< X> otimes k< Y>$ of two free algebras over a field. As an application, we construct a Groebner-Shirshov basis in $k< X> otimes k< Y>$ by lifting a Groebner-Shirshov basis in