ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?

95   0   0.0 ( 0 )
 نشر من قبل Neale Gibson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. P. Gibson




اسأل ChatGPT حول البحث

We report Gemini-North GMOS observations of the inflated hot Jupiter HAT-P-32b during two primary transits. We simultaneously observed two comparison stars and used differential spectro-photometry to produce multi-wavelength light curves. White light curves and 29 spectral light curves were extracted for each transit and analysed to refine the system parameters and produce transmission spectra from 520-930nm in ~14nm bins. The light curves contain time-varying white noise as well as time-correlated noise, and we used a Gaussian process model to fit this complex noise model. Common mode corrections derived from the white light curve fits were applied to the spectral light curves which significantly improved our precision, reaching typical uncertainties in the transit depth of ~2x10^-4, corresponding to about half a pressure scale height. The low resolution transmission spectra are consistent with a featureless model, and we can confidently rule out broad features larger than about one scale height. The absence of Na/K wings or prominent TiO/VO features is most easily explained by grey absorption from clouds in the upper atmosphere, masking the spectral features. However, we cannot confidently rule out clear atmosphere models with low abundances (~10^-3 solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller scale height or ionisation could also contribute to muted spectral features, but alone are unable to to account for the absence of features reported here.

قيم البحث

اقرأ أيضاً

We present a new ground-based visible transmission spectrum of the high-gravity, hot Jupiter HAT-P-23b, obtained as part of the ACCESS project. We derive the spectrum from five transits observed between 2016 and 2018, with combined wavelength coverag e between 5200 {AA} - 9269 {AA} in 200 {AA} bins, and with a median precision of 247 ppm per bin. HAT-P-23bs relatively high surface gravity (g ~ 30 m/s^2), combined with updated stellar and planetary parameters from Gaia DR2, gives a 5-scale-height signal of 384 ppm for a hydrogen-dominated atmosphere. Bayesian models favor a clear atmosphere for the planet with the tentative presence of TiO, after simultaneously modeling stellar contamination, using spots parameter constraints from photometry. If confirmed, HAT-P-23b would be the first example of a high-gravity gas giant with a clear atmosphere observed in transmission at optical/NIR wavelengths; therefore, we recommend expanding observations to the UV and IR to confirm our results and further characterize this planet. This result demonstrates how combining transmission spectroscopy of exoplanet atmospheres with long-term photometric monitoring of the host stars can help disentangle the exoplanet and stellar activity signals.
110 - Ming Zhao 2014
We report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/WIRC in H and Ks bands and with Spitzer/IRAC at 3.6 and 4.5 micron. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P -32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.923 +/- 0. 004 and a position angle 110.64 deg +/- 0.12 deg. We measure the flux ratios of the binary in g r i z and H & Ks bands, and determine Teff = 3565 +/- 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090 +/- 0.033%, 0.178 +/- 0.057%, 0.364 +/- 0.016%, and 0.438 +/- 0.020% in the H, Ks, 3.6 and 4.5 micron bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well-described by a blackbody model for the planet with Tp = 2042 +/- 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 +/- 1.3 min from the predicted mid-eclipse time, which constrains e = 0.0072 +0.0700/-0.0064 when combined with RV data and is more consistent with a circular orbit.
Clouds have an important role in the atmospheres of planetary bodies. It is expected that, like all the planetary bodies in our solar system, exoplanet atmospheres will also have substantial cloud coverage, and evidence is mounting for clouds in a nu mber of hot Jupiters. In order to better characterise planetary atmospheres we need to consider the effects these clouds will have on the observed broadband transmission spectra. Here we examine the expected cloud condensate species for hot Jupiter exoplanets and the effects of various grain sizes and distributions on the resultant transmission spectra from the optical to infrared, which can be used as a broad framework when interpreting exoplanet spectra. We note that significant infrared absorption features appear in the computed transmission spectrum, the result of vibrational modes between the key species in each condensate, which can potentially be very constraining. While it may be hard to differentiate between individual condensates in the broad transmission spectra, it may be possible to discern different vibrational bonds, which can distinguish between cloud formation scenarios such as condensate clouds or photochemically generated species. Vibrational mode features are shown to be prominent when the clouds are composed of small sub-micron sized particles and can be associated with an accompanying optical scattering slope. These infrared features have potential implications for future exoplanetary atmosphere studies conducted with JWST, where such vibrational modes distinguishing condensate species can be probed at longer wavelengths.
We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to $rm R_p/R_{star}$=(0.1159$pm$0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600AA$,$ wide we observed a single peaked spectrum (3.7 $rmsigma$ level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.
For solar-system objects, ultraviolet spectroscopy has been critical in identifying sources for stratospheric heating and measuring the abundances of a variety of hydrocarbon and sulfur-bearing species, produced via photochemical mechanisms, as well as oxygen and ozone. To date, less than 20 exoplanets have been probed in this critical wavelength range (0.2-0.4 um). Here we use data from Hubbles newly implemented WFC3 UVIS G280 grism to probe the atmosphere of the hot Jupiter HAT-P-41b in the ultraviolet through optical in combination with observations at infrared wavelengths. We analyze and interpret HAT-P-41bs 0.2-5.0 um transmission spectrum using a broad range of methodologies including multiple treatments of data systematics as well as comparisons with atmospheric forward, cloud microphysical, and multiple atmospheric retrieval models. Although some analysis and interpretation methods favor the presence of clouds or potentially a combination of Na, VO, AlO, and CrH to explain the ultraviolet through optical portions of HAT-P-41bs transmission spectrum, we find that the presence of a significant H- opacity provides the most robust explanation. We obtain a constraint for the abundance of H-, log(H-) = -8.65 +/- 0.62 in HAT-P-41bs atmosphere, which is several orders of magnitude larger than predictions from equilibrium chemistry for a 1700 - 1950 K hot Jupiter. We show that a combination of photochemical and collisional processes on hot hydrogen-dominated exoplanets can readily supply the necessary amount of H- and suggest that such processes are at work in HAT-P-41b and many other hot Jupiter atmospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا