ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

109   0   0.0 ( 0 )
 نشر من قبل Christian Glaser
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.



قيم البحث

اقرأ أيضاً

71 - Florian Gate 2017
The very low statistics of cosmic rays above the knee region make their study possible only through the detection of the extensive air showers (EAS) produced by their interaction with the constituents of the atmosphere. The Pierre Auger Observatory l ocated in Argentina is the largest high energy cosmic-ray detection array in the world, composed of fluorescence telescopes, particle detectors on the ground and radio antennas. The Auger Engineering Radio Array (AERA) is composed of 153 autonomous radio stations that sample the radio emission of the extensive air showers in the 30 MHz to 80 MHz frequency range. It covers a surface of 17 km$^2$, has a 2$pi$ sensitivity to arrival directions of ultra-high energy cosmic rays (UHECR) and provides a duty cycle close to 100%. The electric field emitted by the secondary particles of an air shower is highly correlated to the primary cosmic ray characteristics like energy and mass, and the emission mechanisms are meanwhile well understood. In this contribution, recent progress on the reconstruction of the mass composition and energy measurements with AERA will be presented.
The Pierre Auger Observatory is designed to study cosmic rays of the highest energies ($>10^{19}$ eV). The ground array of the Observatory will consist of 1600 water Cherenkov detectors deployed over 3000 km^2. The remoteness and large number of dete ctors require a robust, automatic self-calibration procedure. It relies on the measurement of the average charge collected by a photomultiplier tube from the Cherenkov light produced by a vertical and central through-going muon determined to 5 - 10% at the detector via a novel rate-based technique and to 3% precision through analysis of histograms of the charge distribution. The parameters needed for the calibration are measured every minute, allowing for an accurate determination of the signals recorded from extensive air showers produced by primary cosmic rays. The method also enables stable and uniform triggering conditions to be achieved.
65 - Tim Huege 2019
The Auger Engineering Radio Array (AERA) complements the Pierre Auger Observatory with 150 radio-antenna stations measuring in the frequency range from 30 to 80 MHz. With an instrumented area of 17 km$^2$, the array constitutes the largest cosmic-ray radio detector built to date, allowing us to do multi-hybrid measurements of cosmic rays in the energy range of 10$^{17}$ eV up to several 10$^{18}$ eV. We give an overview of AERA results and discuss the significance of radio detection for the validation of the energy scale of cosmic-ray detectors as well as for mass-composition measurements.
126 - A.M. van den Berg 2007
The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with thos e from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimise detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterise the shower from radio signals and to optimise the initial concepts. Furthermore, the operation of a large detection array requires autonomous detector stations. The current design is aiming at stations with antennas for two polarisations, solar power, wireless communication, and local trigger logic. The results of this initial phase will provide an important stepping stone for the design of a few tens kilometers square engineering array
Studies of the correlations of ultra-high energy cosmic ray directions with extra-Galactic objects, of general anisotropy, of photons and neutrinos, and of other astrophysical effects, with the Pierre Auger Observatory. Contributions to the 31st ICRC, Lodz, Poland, July 2009.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا