ﻻ يوجد ملخص باللغة العربية
The Auger Engineering Radio Array (AERA) complements the Pierre Auger Observatory with 150 radio-antenna stations measuring in the frequency range from 30 to 80 MHz. With an instrumented area of 17 km$^2$, the array constitutes the largest cosmic-ray radio detector built to date, allowing us to do multi-hybrid measurements of cosmic rays in the energy range of 10$^{17}$ eV up to several 10$^{18}$ eV. We give an overview of AERA results and discuss the significance of radio detection for the validation of the energy scale of cosmic-ray detectors as well as for mass-composition measurements.
The very low statistics of cosmic rays above the knee region make their study possible only through the detection of the extensive air showers (EAS) produced by their interaction with the constituents of the atmosphere. The Pierre Auger Observatory l
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, whic
An integrated approach has been developed to study radio signals induced by cosmic rays entering the Earths atmosphere. An engineering array will be co-located with the infill array of the Pierre Auger Observatory. Our R&D effort includes the physics
Nearly 50 years ago, the first radio signals from cosmic ray air showers were detected. After many successful studies, however, research ceased not even 10 years later. Only a decade ago, the field was revived with the application of powerful digital
The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with thos