ترغب بنشر مسار تعليمي؟ اضغط هنا

New Signatures of the Milky Way Formation in the Local Halo and Inner Halo Streamers in the Era of Gaia

61   0   0.0 ( 0 )
 نشر من قبل Paola Re Fiorentin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the vicinity of the Milky Way through the use of spectro-photometric data from the Sloan Digital Sky Survey and high-quality proper motions derived from multi-epoch positions extracted from the Guide Star Catalogue II database. In order to identify and characterise streams as relics of the Milky Way formation, we start with classifying, select, and study $2417$ subdwarfs with $rm{[Fe/H] < -1.5}$ up to $3$ kpc away from the Sun as tracers of the local halo system. Then, through phase-space analysis, we find statistical evidence of five discrete kinematic overdensities among $67$ of the fastest-moving stars, and compare them to high-resolution N-body simulations of the interaction between a Milky-Way like galaxy and orbiting dwarf galaxies with four representative cases of merging histories. The observed overdensities can be interpreted as fossil substructures consisting of streamers torn from their progenitors, such progenitors appear to be satellites on prograde and retrograde orbits on different inclinations. In particular, of the five detected overdensities, two appear to be associated, yelding twenty-one additional main-sequence members, with the stream of Helmi et al. (1999) that our analysis confirms on a high inclination prograde orbit. The three newly identified kinematic groups could be associated with the retrograde streams detected by Dinescu (2002) and Kepley et al. (2007), whatever their origin, the progenitor(s) would be on retrograde orbit(s) and inclination(s) within the range $10^{circ} div 60^{circ}$. Finally, we use our simulations to investigate the impact of observational errors and compare the current picture to the promising prospect of highly improved data expected from the Gaia mission.

قيم البحث

اقرأ أيضاً

Using data from the Galactic All-Sky Survey, we have compared the properties and distribution of HI clouds in the disk-halo transition at the tangent points in mirror-symmetric regions of the first quadrant (QI) and fourth quadrant (QIV) of the Milky Way. Individual clouds are found to have identical properties in the two quadrants. However, there are 3 times as many clouds in QI as in QIV, their scale height is twice as large, and their radial distribution is more uniform. We attribute these major asymmetries to the formation of the clouds in the spiral arms of the Galaxy, and suggest that the clouds are related to star formation in the form of gas that has been lifted from the disk by superbubbles and stellar feedback, and fragments of shells that are falling back to the plane.
The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Ga lactic halo have largely remained known unknowns. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galacto-centric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the Hierarchical Bayesian scheme, which allows easy marginalisation over the missing data (the proper-motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy ($beta$) and streaming motion ($v_{rm rot}$) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r $lesssim 15$ kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H]$>-1.4$) and the metal-poor ([Fe/H]$leq - 1.4$) MSTO samples show a clear systematic difference in $v_{rm rot} sim 20-40$ km s$^{-1}$, depending on how restrictive the spatial cuts to cull the disk contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased i.e. $sigma_r>sigma_theta$ or $sigma_phi$ and $beta simeq 0.5$. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, i.e. in-situ versus accretion.
99 - G. C. Myeong 2018
We analyse the structure of the local stellar halo of the Milky Way using $sim$ 60000 stars with full phase space coordinates extracted from the SDSS--{it Gaia} catalogue. We display stars in action space as a function of metallicity in a realistic a xisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended towards high radial action $J_R$ as compared to azimuthal or vertical action, $J_phi$ or $J_z$. It has a mild prograde rotation $(langle v_phi rangle approx 25$ km s$^{-1}$), is radially anisotropic and highly flattened with axis ratio $q approx 0.6 - 0.7$. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation $(langle v_phi rangle approx 50$ km s$^{-1}$), a mild radial anisotropy and a roundish morphology ($qapprox 0.9$). We identify two further components of the halo in action space. There is a high energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, $omega$Centauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] $approx -3$. It has a net outward radial velocity $langle v_R rangle approx 12$ km s$^{-1}$ within the Solar circle at $|z| <3.5$ kpc. The existence of resonant stars at such extremely low metallicities has not been seen before.
(Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from t he Sloan Digital Sky Survey (SDSS). Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios (carbonicity) in excess of [C/Fe]$ = +0.7$ are considered CEMP stars, the global frequency of CEMP stars in the halo system for feh $< -1.5$ is 8%; for feh $< -2.0$ it is 12%; for feh $<-2.5$ it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from $<$[C/Fe]$>$ $sim +1.0$ at feh $= -1.5$ to $<$[C/Fe]$>$ $sim +1.7$ at feh $= -2.7$. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, $|$Z$|$. For $|$Z$|$ $< 5$ kpc, relatively few CEMP stars are identified. For distances $|$Z$|$ $> 5$ kpc, the CarDF exhibits a strong tail towards high values, up to [C/Fe] $>$ +3.0. We also find a clear increase in the CEMP frequency with $|$Z$|$. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the frequency grows from 5% at $|$Z$|$ $sim 2$ kpc to 10% at $|$Z$|$ $sim 10$ kpc. For stars with [Fe/H] $< -$2.0, the frequency grows from 8% at $|$Z$|$ $sim 2$ kpc to 25% at $|$Z$|$ $sim 10$ kpc. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the mean carbonicity is $<$[C/Fe]$>$ $sim +1.0$ for 0 kpc $<$ $|$Z$|$ $<$ 10 kpc, with little dependence on $|$Z$|$; for [Fe/H] $< -$2.0, $<$[C/Fe]$>$ $sim +1.5$, again roughly independent of $|$Z$|$.
Stellar streams produced from dwarf galaxies provide direct evidence of the hierarchical formation of the Milky Way. Here, we present the first comprehensive study of the LMS-1 stellar stream, that we detect by searching for wide streams in the Gaia EDR3 dataset using the STREAMFINDER algorithm. This stream was recently discovered by Yuan et al. (2020). We detect LMS-1 as a $60deg$ long stream to the north of the Galactic bulge, at a distance of $sim 20$ kpc from the Sun, together with additional components that suggest that the overall stream is completely wrapped around the inner Galaxy. Using spectroscopic measurements from LAMOST, SDSS and APOGEE, we infer that the stream is very metal poor (${rm langle [Fe/H]rangle =-2.1}$) with a significant metallicity dispersion ($sigma_{rm [Fe/H]}=0.4$), and it possesses a large radial velocity dispersion (${rm sigma_v=20 pm 4,km,s^{-1}}$). These estimates together imply that LMS-1 is a dwarf galaxy stream. The orbit of LMS-1 is close to polar, with an inclination of $75deg$ to the Galactic plane. Both the orbit and metallicity of LMS-1 are remarkably similar to the globular clusters NGC 5053, NGC 5024 and the stellar stream Indus. These findings make LMS-1 an important contributor to the stellar population of the inner Milky Way halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا