ﻻ يوجد ملخص باللغة العربية
The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained known unknowns. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galacto-centric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the Hierarchical Bayesian scheme, which allows easy marginalisation over the missing data (the proper-motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy ($beta$) and streaming motion ($v_{rm rot}$) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r $lesssim 15$ kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H]$>-1.4$) and the metal-poor ([Fe/H]$leq - 1.4$) MSTO samples show a clear systematic difference in $v_{rm rot} sim 20-40$ km s$^{-1}$, depending on how restrictive the spatial cuts to cull the disk contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased i.e. $sigma_r>sigma_theta$ or $sigma_phi$ and $beta simeq 0.5$. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, i.e. in-situ versus accretion.
We report on the discovery of a new Milky Way companion stellar system located at (RA, Dec) = (22h10m43.15s, +14:56:58.8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimension
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi
Using data from the Galactic All-Sky Survey, we have compared the properties and distribution of HI clouds in the disk-halo transition at the tangent points in mirror-symmetric regions of the first quadrant (QI) and fourth quadrant (QIV) of the Milky
Halo stars orbit within the potential of the Milky Way and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively upon assumptions made on the density and the vel