ترغب بنشر مسار تعليمي؟ اضغط هنا

From Cutting Planes Algorithms to Compression Schemes and Active Learning

78   0   0.0 ( 0 )
 نشر من قبل Ugo Louche
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cutting-plane methods are well-studied localization(and optimization) algorithms. We show that they provide a natural framework to perform machinelearning ---and not just to solve optimization problems posed by machinelearning--- in addition to their intended optimization use. In particular, theyallow one to learn sparse classifiers and provide good compression schemes.Moreover, we show that very little effort is required to turn them intoeffective active learning methods. This last property provides a generic way todesign a whole family of active learning algorithms from existing passivemethods. We present numerical simulations testifying of the relevance ofcutting-plane methods for passive and active learning tasks.



قيم البحث

اقرأ أيضاً

We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems. We wish to learn a hidden $d$-dimensional value $w^*$. Every round, we are presented with a subset $m athcal{X}_t subseteq mathbb{R}^d$ of possible actions. If we choose (i.e. recommend to the user) action $x_t$, we obtain utility $langle x_t, w^* rangle$ but only learn the identity of the best action $argmax_{x in mathcal{X}_t} langle x, w^* rangle$. We design algorithms for this problem which achieve regret $O(dlog T)$ and $exp(O(d log d))$. To accomplish this, we design novel cutting-plane algorithms with low regret -- the total distance between the true point $w^*$ and the hyperplanes the separation oracle returns. We also consider the variant where we are allowed to provide a list of several recommendations. In this variant, we give an algorithm with $O(d^2 log d)$ regret and list size $mathrm{poly}(d)$. Finally, we construct nearly tight algorithms for a weaker variant of this problem where the learner only learns the identity of an action that is better than the recommendation. Our results rely on new algorithmic techniques in convex geometry (including a variant of Steiners formula for the centroid of a convex set) which may be of independent interest.
The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for satisfiability algorithms, and average-case hardness over this distribution has also been linked to hardness of approximation via Feiges hypothesis. We prove that any Cutting Planes refutation for random k-SAT requires exponential size, for k that is logarithmic in the number of variables, in the (interesting) regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.
122 - Chicheng Zhang , Yinan Li 2021
We give a computationally-efficient PAC active learning algorithm for $d$-dimensional homogeneous halfspaces that can tolerate Massart noise (Massart and Nedelec, 2006) and Tsybakov noise (Tsybakov, 2004). Specialized to the $eta$-Massart noise setti ng, our algorithm achieves an information-theoretically near-optimal label complexity of $tilde{O}left( frac{d}{(1-2eta)^2} mathrm{polylog}(frac1epsilon) right)$ under a wide range of unlabeled data distributions (specifically, the family of structured distributions defined in Diakonikolas et al. (2020)). Under the more challenging Tsybakov noise condition, we identify two subfamilies of noise conditions, under which our efficient algorithm provides label complexity guarantees strictly lower than passive learning algorithms.
Cutting-plane methods have enabled remarkable successes in integer programming over the last few decades. State-of-the-art solvers integrate a myriad of cutting-plane techniques to speed up the underlying tree-search algorithm used to find optimal so lutions. In this paper we prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution at hand using samples. We first bound the sample complexity of learning cutting planes from the canonical family of Chvatal-Gomory cuts. Our bounds handle any number of waves of any number of cuts and are fine tuned to the magnitudes of the constraint coefficients. Next, we prove sample complexity bounds for more sophisticated cut selection policies that use a combination of scoring rules to choose from a family of cuts. Finally, beyond the realm of cutting planes for integer programming, we develop a general abstraction of tree search that captures key components such as node selection and variable selection. For this abstraction, we bound the sample complexity of learning a good policy for building the search tree.
Reward learning is a fundamental problem in robotics to have robots that operate in alignment with what their human user wants. Many preference-based learning algorithms and active querying techniques have been proposed as a solution to this problem. In this paper, we present APReL, a library for active preference-based reward learning algorithms, which enable researchers and practitioners to experiment with the existing techniques and easily develop their own algorithms for various modules of the problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا