ﻻ يوجد ملخص باللغة العربية
We solve the nonlinear Dirichlet problem (uniquely) for functions with prescribed asymptotic singularities at a finite number of points, and with arbitrary continuous boundary data, on a domain in euclidean space. The main results apply, in particular, to subequations with a Riesz characteristic $p geq 2$. In this case it is shown that, without requiring uniform ellipticity, the Dirichlet problem can be solved uniquely for arbitrary continuous boundary data with singularities asymptotic to the Riesz kernel: $Theta_j K_p(x - x_j)$, where $K_p(x) = - {1over|x|^{p-2}}$ for $p>2$ and $K_2(x) = log |x|$, at any prescribed finite set of points $x_1,...,x_k$ in the domain and any finite set of positive real numbers $Theta_1,..., Theta_k$. This sharpens a previous result of the authors concerning the discreteness of high-density sets of subsolutions. Uniqueness and existence results are also established for finite-type singularities such as $Theta_j |x - x_j|^{2-p}$ for $1leq p<2$. The main results apply similarly with prescribed singularities asymptotic to the fundamental solutions of Armstrong-Sirakov-Smart (in the uniformly elliptic case).
In this paper, we solve the Dirichlet problem with continuous boundary data for the Lagrangian mean curvature equation on a uniformly convex, bounded domain in $mathbb{R}^n$.
We shall discuss the inhomogeneous Dirichlet problem for: $f(x,u, Du, D^2u) = psi(x)$ where $f$ is a natural differential operator, with a restricted domain $F$, on a manifold $X$. By natural we mean operators that arise intrinsically from a given ge
We prove sharp blow up rates of solutions of higher order conformally invariant equations in a bounded domain with an isolated singularity, and show the asymptotic radial symmetry of the solutions near the singularity. This is an extension of the cel
We study a Dirichlet problem for an elliptic equation defined by a degenerate coercive operator and a singular right-hand side. We will show that the right-hand side has some regularizing effects on the solutions, even if it is singular.
The local invariants of a meromorphic Abelian differential on a Riemann surface of genus $g$ are the orders of zeros and poles, and the residues at the poles. The main result of this paper is that with few exceptions, every pattern of orders and resi