ترغب بنشر مسار تعليمي؟ اضغط هنا

Orientation-dependent magnetism and orbital structure of strained YTiO$_3$ films on LaAlO$_3$ substrates

273   0   0.0 ( 0 )
 نشر من قبل Shuai Dong
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The strain tuned magnetism of YTiO$_3$ film grown on the LaAlO$_3$ ($110$) substrate is studied by the method of the first principles, and compared with that of the ($001$)-oriented one. The obtained magnetism is totally different, which is ferromagnetic for the film on the ($110$) substrate but A-type antiferromagnetic on the ($001$) one. This orientation-dependent magnetism is attributed to the subtle orbital ordering of YTiO$_3$ film. The $d_{xz}$/$d_{yz}$-type orbital ordering is predominant for the ($001$) one, but for the ($110$) case, the $d_{xy}$ orbital is mostly occupied plus a few contribution from the $d_{xz}$/$d_{yz}$ orbital. Moreover, the lattice mismatch is modest for the ($110$) case but more serious for the ($001$) one, which is also responsible for this contrasting magnetism.



قيم البحث

اقرأ أيضاً

High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO$_3$ thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic and electronic properties were characterized by reflection-hig h-energy-electron-diffraction, X-ray diffraction, vibrating sample magnetometry, and element-resolved resonant soft X-ray absorption spectroscopy. To reveal ferromagnetism of the constituent titanium ions, X-ray magnetic circular dichroism spectroscopy was carried out using four detection modes probing complimentary spatial scale, which overcomes a challenge of probing ferromagnetic titanium with pure Ti3+(3d$^1$). Our work provides a pathway to distinguish between the roles of titanium and A-site magnetic rare-earth cations in determining the magnetism in rare-earth titanates thin films and heterostructures.
PbTiO$_3$ is a simple but very important ferroelectric oxide that has been extensively studied and widely used in various technological applications. However, most previous studies and applications were based on the bulk material or the conventional [$001$]-orientated films. There are few studies on PbTiO$_3$ films grown along other crystalline axes. In this study, a first-principles calculation was performed to compute the polarization of PbTiO$_3$ films strained by SrTiO$_3$ and LaAlO$_3$ substrates. Our results show that the polarization of PbTiO$_3$ films strongly depends on the growth orientation as well as the monoclinic angles. Further, it is suggested that the ferroelectricity of PbTiO$_3$ mainly depends on the tetragonality of the lattice, instead of the simple strain.
While structure refinement is routinely achieved for simple bulk materials, the accurate structural determination still poses challenges for thin films due on the one hand to the small amount of material deposited on the thicker substrate and, on the other hand, to the intricate epitaxial relationships that substantially complicate standard X-ray diffraction analysis. Using a combined approach, we analyze the crystal structure of epitaxial LaVO$_3$ thin films grown on (100)-oriented SrTiO$_3$. Transmission electron microscopy study reveals that the thin films are epitaxially grown on SrTiO$_3$ and points to the presence of 90$^{circ}$ oriented domains. The mapping of the reciprocal space obtained by high resolution X-ray diffraction permits refinement of the lattice parameters. We finally deduce that strain accommodation imposes a monoclinic structure onto the LaVO$_3$ film. The reciprocal space maps are numerically processed and the extracted data computed to refine the atomic positions, which are compared to those obtained using precession electron diffraction tomography. We discuss the obtained results and our methodological approach as a promising thin film structure determination for complex systems.
537 - S. Middey , D. Meyers , M. Kareev 2012
The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize the polarity. We report o n the synthesis of high quality LaNiO$_3$/mLaAlO$_3$ pseudo cubic (111) superlattices on polar (111)-oriented LaAlO$_3$, the proposed complex oxide candidate for a topological insulating behavior. Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates.
144 - R. Miki , K. Zhao , T. Hajiri 2020
We report the growth of noncollinear antiferromagnetic (AFM) Mn$_3$Ni$_{0.35}$Cu$_{0.65}$N films and the orientation-dependent anomalous Hall effect (AHE) of (001) and (111) films due to nonzero Berry curvature. We found that post-annealing at 500$^c irc$C can significantly improve the AHE signals, though using the appropriate post-annealing conditions is important. The AHE and magnetization loops show sharp flipping at the coercive field in (111) films, while (001) films are hard to saturate by a magnetic field. The anomalous Hall conductivity of (111) films is an order of magnitude larger than that of (001) films. The present results provide not only a better understanding of the AHE in Mn$_3X$N systems but also further opportunities to study the unique phenomena related to noncollinear AFM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا