ﻻ يوجد ملخص باللغة العربية
High-kinetic energy impacts between inorganic surfaces and molecular beams seeded by organics represent a fundamental case study in materials science, most notably when they activate chemical-physical processes leading to nanocrystals growth. Here we demonstrate single-layer graphene synthesis on copper by C60 supersonic molecular beam (SuMBE) epitaxy at 645 {deg}C, with the possibility of further reduction. Using a variety of electron spectroscopy and microscopy techniques, and first-principles simulations, we describe the chemical-physical mechanisms activated by SuMBE resulting in graphene growth. In particular, we find a crucial role of high-kinetic energy deposition in enhancing the organic/inorganic interface interaction, to control the cage openings and to improve the growing film quality. These results, while discussed in the specific case of graphene on copper, are potentially extendable to different metallic or semiconductor substrates and where lower processing temperature is desirable.
The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display s
We report on the controlled growth of h-BN/graphite by means of molecular beam epitaxy (MBE). X-ray photoelectron spectroscopy (XPS) suggests an interface without any reaction or intermixing, while the angle resolved photoemission spectroscopy (ARPES
Germanium is emerging as the substrate of choice for the growth of graphene in CMOS-compatible processes. For future application in next generation devices the accurate control over the properties of high-quality graphene synthesized on Ge surfaces,
Hexagonal boron nitride (hBN) has been grown on sapphire substrates by ultra-high temperature molecular beam epitaxy (MBE). A wide range of substrate temperatures and boron fluxes have been explored, revealing that high crystalline quality hBN layers
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. T