ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotationally Aligned Hexagonal Boron Nitride on Sapphire by High-Temperature Molecular Beam Epitaxy

107   0   0.0 ( 0 )
 نشر من قبل Ryan Page
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hexagonal boron nitride (hBN) has been grown on sapphire substrates by ultra-high temperature molecular beam epitaxy (MBE). A wide range of substrate temperatures and boron fluxes have been explored, revealing that high crystalline quality hBN layers are grown at high substrate temperatures, $>$1600$^circ$C, and low boron fluxes, $sim1times10^{-8}$ Torr beam equivalent pressure. emph{In-situ} reflection high energy electron diffraction (RHEED) revealed the growth of hBN layers with $60^circ$ rotational symmetry and the $[11bar20]$ axis of hBN parallel to the $[1bar100]$ axis of the sapphire substrate. Unlike the rough, polycrystalline films previously reported, atomic force microscopy (AFM) and transmission electron microscopy (TEM) characterization of these films demonstrate smooth, layered, few-nanometer hBN films on a nitridated sapphire substrate. This demonstration of high-quality hBN growth by MBE is a step towards its integration into existing epitaxial growth platforms, applications, and technologies.

قيم البحث

اقرأ أيضاً

Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. T he presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.
RF plasma assisted MBE growth of Scandium Nitride (ScN) thin films on GaN (0001)/SiC, AlN (0001)/Al2O3 and on 6H-SiC (0001) hexagonal substrates is found to lead to a face centered cubic (rock-salt) crystal structure with (111) out-of-plane orientati on instead of hexagonal orientation. For the first time, cubic (111) twinned patterns in ScN are observed by in-situ electron diffraction during epitaxy, and the twin domains in ScN are detected by electron backscattered diffraction, and further corroborated with X-ray diffraction. The epitaxial ScN films display very smooth, sub nanometer surface roughness at a growth temperature of 750C. Temperature-dependent Hall-effect measurements indicate a constant high n-type carrier concentration of ~1x1020/cm3 and electron mobilities of ~ 20 cm2/Vs.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment s on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride ha s already been acknowledged and these materials have been suggested as novel core materials for thermal management in electronics. However, it was not clear if mass produced flakes of hexagonal boron nitride would allow one to achieve an industrially-relevant value of thermal conductivity. Here we demonstrate that laminates of hexagonal boron nitride exhibit thermal conductivity of up to 20 W/mK, which is significantly larger than that currently used in thermal management. We also show that the thermal conductivity of laminates increases with the increasing volumetric mass density, which creates a way of fine-tuning its thermal properties.
90 - S.Sonoda 2001
Wurtzite (Ga,Mn)N films showing ferromagnetic behaviour at room temperature were successfully grown on sapphire(0001) substrates by molecular beam epitaxy using ammonia as nitrogen source. Magnetization measurements were carried out by a superconduct ing quantum interference device at the temperatures between 1.8K and 300K with magnetic field applied parallel to the film plane up to 7T. The magnetic-field dependence of magnetization of a (Ga,Mn)N film at 300K were ferromagnetic, while a GaN film showed Pauli paramagnetism like behaviour. The Curie temperatures of a (Ga,Mn)N film was estimated as 940K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا