ﻻ يوجد ملخص باللغة العربية
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry breaking. We show that the magnetic damping tensor adopts a general form that accounts for a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which spin pumping in the presence of anomalous Hall effect and an effective $s$-$d$ Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain wall motion is investigated in the flow and creep regimes. These predictions have major importance in the context of field- and current-driven texture motion in noncentrosymmetric (ferro-, ferri-, antiferro-)magnets, not limited to metals.
We exhaustively construct instanton solutions and elucidate their properties in one-dimensional anti-ferromagnetic chiral magnets based on the $O(3)$ nonlinear sigma model description of spin chains with the Dzyaloshinskii-Moriya (DM) interaction. By
Magnetic singularities, also known as magnetic monopoles or Bloch points, represent intriguingphenomena in nanomagnetism. We show that a pair of coupled Bloch points may appear as alocalized, stable state in cubic chiral magnets. Detailed analysis is
We study the quantum propagation of a Skyrmion in chiral magnetic insulators by generalizing the micromagnetic equations of motion to a finite-temperature path integral formalism, using field theoretic tools. Promoting the center of the Skyrmion to a
In chiral magnets a magnetic helix forms where the magnetization winds around a propagation vector $mathbf{q}$. We show theoretically that a magnetic field $mathbf{B}_{perp}(t) perp mathbf{q}$, which is spatially homogeneous but oscillating in time,
Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far