ﻻ يوجد ملخص باللغة العربية
We first show that the subgroup of the abelian real group $mathbb{R}$ generated by the coordinates of a point in $x = (x_1,dots,x_n)inmathbb{R}^n$ completely classifies the $mathsf{GL}(n,mathbb Z)$-orbit of $x$. This yields a short proof of J.S.Danis theorem: the $mathsf{GL}(n,mathbb Z)$-orbit of $xinmathbb{R}^n$ is dense iff $x_i/x_jin mathbb{R} setminus mathbb Q$ for some $i,j=1,dots,n$. We then classify $mathsf{GL}(n,mathbb Z)$-orbits of rational affine subspaces $F$ of $mathbb{R}^n$. We prove that the dimension of $F$ together with the volume of a special parallelotope associated to $F$ yields a complete classifier of the $mathsf{GL}(n,mathbb Z)$-orbit of $F$.
We confirm a conjecture of Jens Marklof regarding the equidistribution of certain sparse collections of points on expanding horospheres. These collections are obtained by intersecting the expanded horosphere with a certain manifold of complementary d
A subspace of $mathbb{F}_2^n$ is called cyclically covering if every vector in $mathbb{F}_2^n$ has a cyclic shift which is inside the subspace. Let $h_2(n)$ denote the largest possible codimension of a cyclically covering subspace of $mathbb{F}_2^n$.
Our recent work established existence and uniqueness results for $mathcal{C}^{k,alpha}_{text{loc}}$ globally defined linearizing semiconjugacies for $mathcal{C}^1$ flows having a globally attracting hyperbolic fixed point or periodic orbit (Kvalheim
We introduce a computationally tractable way to describe the $mathbb Z$-homotopy fixed points of a $C_{n}$-spectrum $E$, producing a genuine $C_{n}$ spectrum $E^{hnmathbb Z}$ whose fixed and homotopy fixed points agree and are the $mathbb Z$-homotopy
We examine iteration of certain skew-products on the bidisk whose components are rational inner functions, with emphasis on simple maps of the form $Phi(z_1,z_2) = (phi(z_1,z_2), z_2)$. If $phi$ has degree $1$ in the first variable, the dynamics on e