ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of low-degree rational inner skew-products on $mathbb{T}^2$

224   0   0.0 ( 0 )
 نشر من قبل Ryan Tully-Doyle
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine iteration of certain skew-products on the bidisk whose components are rational inner functions, with emphasis on simple maps of the form $Phi(z_1,z_2) = (phi(z_1,z_2), z_2)$. If $phi$ has degree $1$ in the first variable, the dynamics on each horizontal fiber can be described in terms of Mobius transformations but the global dynamics on the $2$-torus exhibit some complexity, encoded in terms of certain $mathbb{T}^2$-symmetric polynomials. We describe the dynamical behavior of such mappings $Phi$ and give criteria for different configurations of fixed point curves and rotation belts in terms of zeros of a related one-variable polynomial.



قيم البحث

اقرأ أيضاً

122 - Matthieu Astorg 2020
We continue our investigation of the parameter space of families of polynomial skew products. Assuming that the base polynomial has a Julia set not totally disconnected and is neither a Chebyshev nor a power map, we prove that, near any bifurcation p arameter, one can find parameters where $k$ critical points bifurcate emph{independently}, with $k$ up to the dimension of the parameter space. This is a striking difference with respect to the one-dimensional case. The proof is based on a variant of the inclination lemma, applied to the postcritical set at a Misiurewicz parameter. By means of an analytical criterion for the non-vanishing of the self-intersections of the bifurcation current, we deduce the equality of the supports of the bifurcation current and the bifurcation measure for such families. Combined with results by Dujardin and Taflin, this also implies that the support of the bifurcation measure in these families has non-empty interior.As part of our proof we construct, in these families, subfamilies of codimension 1 where the bifurcation locus has non empty interior. This provides a new independent proof of the existence of holomorphic families of arbitrarily large dimension whose bifurcation locus has non empty interior. Finally, it shows that the Hausdorff dimension of the support of the bifurcation measure is maximal at any point of its support.
We initiate a parametric study of holomorphic families of polynomial skew products, i.e., polynomial endomorphisms of $mathbb{C}^2$ of the form $F(z,w)= (p(z), q(z,w))$ that extend to holomorphic endomorphisms of $mathbb{P}^2(mathbb{C})$. We prove th at dynamical stability in the sense of arXiv:1403.7603 preserves hyperbolicity within such families, and give a complete classification of the hyperbolic components that are the analogue, in this setting, of the complement of the Mandelbrot set for the family $z^2 +c$. We also precisely describe the geometry of the bifurcation locus and current near the boundary of the parameter space. One of our tools is an asymptotic equidistribution property for the bifurcation current. This is established in the general setting of families of endomorphisms of $mathbb{P}^k$ and is the first equidistribution result of this kind for holomorphic dynamical systems in dimension larger than one.
For a rational function f we consider the norm of the derivative with respect to the spherical metric and denote by K(f) the supremum of this norm. We give estimates of this quantity K(f) both for an individual function and for sequences of iterates.
148 - Kaijen Cheng 2017
In this paper we give an elementary treatment of the dynamics of skew tent maps. We divide the two-parameter space into six regions. Two of these regions are further subdivided into infinitely many regions. All of the regions are given explicitly. We find the attractor in each subregion, determine whether the attractor is a periodic orbit or is chaotic, and also determine the asymptotic fate of every point. We find that when the attractor is chaotic, it is either a single interval or the disjoint union of a finite number of intervals; when it is a periodic orbit, all periods are possible. Sometimes, besides the attractor, there exists an invariant chaotic Cantor set.
158 - Kelly Bickel , Joseph A. Cima , 2021
We analyze the fine structure of Clark measures and Clark isometries associated with two-variable rational inner functions on the bidisk. In the degree (n,1) case, we give a complete description of supports and weights for both generic and exceptiona l Clark measures, characterize when the associated embedding operators are unitary, and give a formula for those embedding operators. We also highlight connections between our results and both the structure of Agler decompositions and study of extreme points for the set of positive pluriharmonic measures on 2-torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا