ترغب بنشر مسار تعليمي؟ اضغط هنا

Plancks confirmation of the M31 disk and halo rotation

139   0   0.0 ( 0 )
 نشر من قبل Francesco De Paolis
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plancks data acquired during the first 15.4 months of observations towards both the disk and halo of the M31 galaxy are analyzed. We confirm the existence of a temperature asymmetry, previously detected by using the 7-year WMAP data, along the direction of the M31 rotation, therefore indicative of a Doppler-induced effect. The asymmetry extends up to about 10 degrees (about 130 kpc) from the M31 center. We also investigate the recent issue raised in Rubin and Loeb (2014) about the kinetic Sunyaev-Zeldovich effect from the diffuse hot gas in the Local Group, predicted to generate a hot spot of a few degrees size in the CMB maps in the direction of M31, where the free electron optical depth gets the maximum value. We also consider the issue whether in the opposite direction with respect to the M31 galaxy the same effect induces a minimum in temperature in the Plancks maps of the sky. We find that the Plancks data at 100 GHz show an effect even larger than that expected.


قيم البحث

اقرأ أيضاً

The Andromeda (M31) galaxy subtends nearly 100 sq. deg. on the sky, with severe contamination from the Milky Way halo stars whose surface density displays a steep gradient across the entire M31 field-of-view. Planetary Nebulae (PNe) are a population of stars firmly associated with M31, that are excellent tracers of light, chemistry and motion in galaxies. We present a 16 sq. deg. survey of the disk and inner halo of M31 with MegaCam@CFHT to identify PNe, characterize their luminosity-specific PN number and luminosity function (PNLF). PNe were identified based on their bright OIII 5007 $unicode{x212B}$ emission and absence of a continuum. Subsamples of the faint PNe were independently confirmed by matching with resolved Hubble Space Telescope sources from the PHAT survey and spectroscopic follow-up observations with HectoSpec@MMT. The current survey reaches 2 mag fainter than the previous most-sensitive survey. We identify 4289 PNe, of which only 1099 were previously known. By comparing the PN number density with the surface brightness profile of M31 out to ~30 kpc along the minor-axis, we find that the stellar population in the inner halo has a 7 times larger luminosity-specific PN number value than that of the disk. It indicates that the stellar population at deprojected minor-axis radii larger than ~10 kpc is different from that in the M31 disk. We measure the PNLF and find a bright cut-off and a slope consistent with the previous determination by Ciardullo et al. (1989). Interestingly, it shows a significant rise at the faint end, present in all radial bins covered by the survey, much steeper than that observed for the Magellanic clouds and Milky Way bulge. M31 shows two major episodes of star formation and the rise in the faint end of the PNLF is possibly associated with the older stellar population. It may also be a result of varying opacity of the PNe.
We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromedas Stellar Halo survey. We present the photometric pro perties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color-color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the samples eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.
We measured [Fe/H] and [$alpha$/Fe] using spectral synthesis of low-resolution stellar spectroscopy for 70 individual red giant branch stars across four fields spanning the outer disk, Giant Stellar Stream (GSS), and inner halo of M31. Fields at M31- centric projected distances of 23 kpc in the halo, 12 kpc in the halo, 22 kpc in the GSS, and 26 kpc in the outer disk are $alpha$-enhanced, with $langle$[$alpha$/Fe]$rangle$ = 0.43, 0.50, 0.41, and 0.58, respectively. The 23 kpc and 12 kpc halo fields are relatively metal-poor, with $langle$[Fe/H]$rangle$ = $-$1.54 and $-$1.30, whereas the 22 kpc GSS and 26 kpc outer disk fields are relatively metal-rich with $langle$[Fe/H]$rangle$ = $-$0.84 and $-$0.92, respectively. For fields with substructure, we separated the stellar populations into kinematically hot stellar halo components and kinematically cold components. We did not find any evidence of an [$alpha$/Fe] gradient along the high surface brightness core of the GSS between $sim$17$-$22 kpc. However, we found tentative suggestions of a negative [$alpha$/Fe] gradient in the stellar halo, which may indicate that different progenitor(s) or formation mechanisms contributed to the build up of the inner versus outer halo. Additionally, the [$alpha$/Fe] distribution of the metal-rich ([Fe/H] $>$ $-$1.5), smooth inner stellar halo (r$_{rm{proj}}$ $lesssim$ 26 kpc) is inconsistent with having formed from the disruption of progenitor(s) similar to present-day M31 satellite galaxies. The 26 kpc outer disk is most likely associated with the extended disk of M31, where its high $alpha$-enhancement provides support for an episode of rapid star formation in M31s disk, possibly induced by a major merger.
94 - L. G. Bouma 2021
Recent analyses of the Gaia data have identified diffuse stellar populations surrounding nearby open clusters. It is important to verify that these halos, tails, and strings are of similar ages and compositions as stars in the denser part of the clus ter. We present an analysis of NGC 2516 ($approx$150 Myr), which has a classical tidal radius of 10 pc and an apparent halo of stars spanning 500 pc ($20^circ$ on-sky). Combining photometry from Gaia, rotation periods from TESS, and lithium measurements from Gaia-ESO and GALAH, we find that the halo of NGC 2516 is the same age as the clusters core. Two thirds of kinematically selected halo members out to 250 pc from the cluster center have rotation periods consistent with a gyrochronological age of 150 Myr. A comparison sample of field stars shows no such trend. The lithium abundances of stars in the halo are higher than in the field, and are correlated with the stellar rotation rate and binarity fraction, as has been noted in other young open clusters. Broadly speaking, this work supports a new paradigm wherein the halos of open clusters are often more populous than their cores. We highlight implications for spectroscopic survey targeting, open cluster dispersal, and planet searches around young stars.
The X-ray source populations within galaxies are typically difficult to identify and classify from X-ray data alone. We are able to break through this barrier by combining deep new Chandra ACIS-I observations with extensive Hubble Space Telescope ima ging from the PHAT survey of the M31 disk. We detect 373 X-ray sources down to 0.35-8.0 keV flux of 10$^{-15}$ erg cm$^{-2}$ s$^{-1}$ over 0.4 square degrees, 170 of which are reported for the first time. We identify optical counterpart candidates for 188 of the 373 sources, after using the HST data to correct the absolute astrometry of our Chandra imaging to 0.1$$. While 58 of these 188 are associated with point sources potentially in M31, over half (107) of the counterpart candidates are extended background galaxies, 5 are star clusters, 12 are foreground stars, and 6 are supernova remnants. Sources with no clear counterpart candidate are most likely to be undetected background galaxies and low-mass X-ray binaries in M31. The 58 point sources that are not consistent with foreground stars are bright enough that they could be high mass stars in M31; however, all but 8 have optical colors inconsistent with single stars, suggesting that many could be background galaxies or binary counterparts. For point-like counterparts, we examine the star formation history of the surrounding stellar populations to look for a young component that could be associated with a high mass X-ray binary. For the 40 point-like counterpart candidates associated with young populations, we find that their age distribution has two peaks at 15-20 Myr and 40-50 Myr. If we only consider the 8 counterpart candidates with typical high-mass main sequence optical star colors, their age distribution peaks mimic those of the sample of 40. Finally, we find that intrinsic faintness, and not extinction, is the main limitation for finding further counterpart candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا