ﻻ يوجد ملخص باللغة العربية
This paper focuses on the study of open curves in a manifold M, and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparameterization invariant metric on the space of immersions M = Imm([0,1], M) by pullback of a metric on the tangent bundle TM derived from the Sasaki metric. We observe that such a natural choice of Riemannian metric on TM induces a first-order Sobolev metric on M with an extra term involving the origins, and leads to a distance which takes into account the distance between the origins and the distance between the SRV representations of the curves. The geodesic equations for this metric are given, as well as an idea of how to compute the exponential map for observed trajectories in applications. This provides a generalized theoretical SRV framework for curves lying in a general manifold M .
We find a family of Kahler metrics invariantly defined on the radius $r_0>0$ tangent disk bundle ${{cal T}_{M,r_0}}$ of any given real space-form $M$ or any of its quotients by discrete groups of isometries. Such metrics are complete in the non-negat
We show that $phi$-invariant submanifolds of metric contact pairs with orthogonal characteristic foliations make constant angles with the Reeb vector fields. Our main result is that for the normal case such submanifolds of dimension at least $2$ are
We study reparametrization invariant Sobolev metrics on spaces of regular curves. We discuss their completeness properties and the resulting usability for applications in shape analysis. In particular, we will argue, that the development of efficient
We consider geometries on the space of Riemannian metrics conformally equivalent to the widely studied Ebin L^2 metric. Among these we characterize a distinguished metric that can be regarded as a generalization of Calabis metric on the space of Kahl
The {em focal curve} of an immersed smooth curve $gamma:smapsto gamma(s)$, in Euclidean space $R^{m+1}$, consists of the centres of its osculating hyperspheres. The focal curve may be parametrised in terms of the Frenet frame of $gamma$ (${bf t},{bf