ﻻ يوجد ملخص باللغة العربية
We show that $phi$-invariant submanifolds of metric contact pairs with orthogonal characteristic foliations make constant angles with the Reeb vector fields. Our main result is that for the normal case such submanifolds of dimension at least $2$ are all minimal. We prove that an odd-dimensional $phi$-invariant submanifold of a metric contact pair with orthogonal characteristic foliations inherits a contact form with an almost contact metric structure, and this induced structure is contact metric if and only if the submanifold is tangent to one Reeb vector field and orthogonal to the other one. Furthermore we show that the leaves of the two characteristic foliations of the differentials of the contact pair are minimal. We also prove that when one Reeb vector field is Killing and spans one characteristic foliation, the metric contact pair is a product of a contact metric manifold with $mathbb{R}$.
We study invariant submanifolds of manifolds endowed with a normal or complex metric contact pair with decomposable endomorphism field $phi$. For the normal case, we prove that a $phi$-invariant submanifold tangent to a Reeb vector field and orthogon
We consider manifolds endowed with metric contact pairs for which the two characteristic foliations are orthogonal. We give some properties of the curvature tensor and in particular a formula for the Ricci curvature in the direction of the sum of the
A contact pair on a manifold always admits an associated metric for which the two characteristic contact foliations are orthogonal. We show that all these metrics have the same volume element. We also prove that the leaves of the characteristic folia
We prove that the universal covering of a complete locally symmetric normal metric contact pair manifold is a Calabi-Eckmann manifold. Moreover we show that a complete, simply connected, normal metric contact pair manifold such that the foliation ind
We prove that the normal metric contact pairs with orthogonal characteristic foliations, which are either Bochner flat or locally conformally flat, are locally isometric to the Hopf manifolds. As a corollary we obtain the classification of locally co