ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES

124   0   0.0 ( 0 )
 نشر من قبل Youngsoo Park
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. This analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.



قيم البحث

اقرأ أيضاً

We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations fro m KiDS+GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_ast > 10^{11},M_odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode AGN accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. (2017). Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only ($chi^2 = 1.81$ compared to $chi^2 = 7.79$ for the SAM), and locally brightest galaxies samples ($chi^2 = 3.80$ compared to $chi^2 = 5.01$). With added dust corrections to the colours it matches the SDSS clustering signal well for red low mass galaxies. We find that both the SAMs and TNG300 predict $sim 50,%$ excessive lensing signals for intermediate mass red galaxies with $10.2 < log_{10} M_ast [ M_odot ] < 11.2$ at $r approx 0.6,h^{-1},mathrm{Mpc}$, which require further theoretical development.
100 - E. J. Baxter , Y. Omori , C. Chang 2018
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to pl ace tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES year one joint probes analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zeldovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.
We present the methodology for a joint cosmological analysis of weak gravitational lensing from the fourth data release of the ESO Kilo-Degree Survey (KiDS-1000) and galaxy clustering from the partially overlapping BOSS and 2dFLenS surveys. Cross-cor relations between galaxy positions and ellipticities have been incorporated into the analysis, necessitating a hybrid model of non-linear scales that blends perturbative and non-perturbative approaches, and an assessment of contributions by astrophysical effects. All weak lensing signals are measured consistently via Fourier-space statistics that are insensitive to the survey mask and display low levels of mode mixing. The calibration of photometric redshift distributions and multiplicative gravitational shear bias has been updated, and a more complete tally of residual calibration uncertainties is propagated into the likelihood. A dedicated suite of more than 20000 mocks is used to assess the performance of covariance models and to quantify the impact of survey geometry and spatial variations of survey depth on signals and their errors. The sampling distributions for the likelihood and the $chi^2$ goodness-of-fit statistic have been validated, with proposed changes to the number of degrees of freedom. Standard weak lensing point estimates on $S_8=sigma_8,(Omega_{rm m}/0.3)^{1/2}$ derived from its marginal posterior are easily misinterpreted to be biased low, and an alternative estimator and associated credible interval have been proposed. Known systematic effects pertaining to weak lensing modelling and inference are shown to bias $S_8$ by no more than 0.1 standard deviations, with the caveat that no conclusive validation data exist for models of intrinsic galaxy alignments. Compared to the previous KiDS analyses, $S_8$ constraints are expected to improve by 20% for weak lensing alone and by 29% for the joint analysis. [abridged]
We perform a joint analysis of the auto and cross-correlations between three cosmic fields: the galaxy density field, the galaxy weak lensing shear field, and the cosmic microwave background (CMB) weak lensing convergence field. These three fields ar e measured using roughly 1300 sq. deg. of overlapping optical imaging data from first year observations of the Dark Energy Survey and millimeter-wave observations of the CMB from both the South Pole Telescope Sunyaev-Zeldovich survey and Planck. We present cosmological constraints from the joint analysis of the two-point correlation functions between galaxy density and galaxy shear with CMB lensing. We test for consistency between these measurements and the DES-only two-point function measurements, finding no evidence for inconsistency in the context of flat $Lambda$CDM cosmological models. Performing a joint analysis of five of the possible correlation functions between these fields (excluding only the CMB lensing autospectrum) yields $S_{8}equiv sigma_8sqrt{Omega_{rm m}/0.3} = 0.782^{+0.019}_{-0.025}$ and $Omega_{rm m}=0.260^{+0.029}_{-0.019}$. We test for consistency between these five correlation function measurements and the Planck-only measurement of the CMB lensing autospectrum, again finding no evidence for inconsistency in the context of flat $Lambda$CDM models. Combining constraints from all six two-point functions yields $S_{8}=0.776^{+0.014}_{-0.021}$ and $Omega_{rm m}= 0.271^{+0.022}_{-0.016}$. These results provide a powerful test and confirmation of the results from the first year DES joint-probes analysis.
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification opti cal imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zeldovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favored $Lambda$CDM cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا