ترغب بنشر مسار تعليمي؟ اضغط هنا

KiDS-1000 Methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis

156   0   0.0 ( 0 )
 نشر من قبل Benjamin Joachimi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the methodology for a joint cosmological analysis of weak gravitational lensing from the fourth data release of the ESO Kilo-Degree Survey (KiDS-1000) and galaxy clustering from the partially overlapping BOSS and 2dFLenS surveys. Cross-correlations between galaxy positions and ellipticities have been incorporated into the analysis, necessitating a hybrid model of non-linear scales that blends perturbative and non-perturbative approaches, and an assessment of contributions by astrophysical effects. All weak lensing signals are measured consistently via Fourier-space statistics that are insensitive to the survey mask and display low levels of mode mixing. The calibration of photometric redshift distributions and multiplicative gravitational shear bias has been updated, and a more complete tally of residual calibration uncertainties is propagated into the likelihood. A dedicated suite of more than 20000 mocks is used to assess the performance of covariance models and to quantify the impact of survey geometry and spatial variations of survey depth on signals and their errors. The sampling distributions for the likelihood and the $chi^2$ goodness-of-fit statistic have been validated, with proposed changes to the number of degrees of freedom. Standard weak lensing point estimates on $S_8=sigma_8,(Omega_{rm m}/0.3)^{1/2}$ derived from its marginal posterior are easily misinterpreted to be biased low, and an alternative estimator and associated credible interval have been proposed. Known systematic effects pertaining to weak lensing modelling and inference are shown to bias $S_8$ by no more than 0.1 standard deviations, with the caveat that no conclusive validation data exist for models of intrinsic galaxy alignments. Compared to the previous KiDS analyses, $S_8$ constraints are expected to improve by 20% for weak lensing alone and by 29% for the joint analysis. [abridged]



قيم البحث

اقرأ أيضاً

We present a joint cosmological analysis of weak gravitational lensing observations from the Kilo-Degree Survey (KiDS-1000), with redshift-space galaxy clustering observations from the Baryon Oscillation Spectroscopic Survey (BOSS), and galaxy-galaxy lensing observations from the overlap between KiDS-1000, BOSS and the spectroscopic 2-degree Field Lensing Survey (2dFLenS). This combination of large-scale structure probes breaks the degeneracies between cosmological parameters for individual observables, resulting in a constraint on the structure growth parameter $S_8=sigma_8 sqrt{Omega_{rm m}/0.3} = 0.766^{+0.020}_{-0.014}$, that has the same overall precision as that reported by the full-sky cosmic microwave background observations from Planck. The recovered $S_8$ amplitude is low, however, by $8.3 pm 2.6$ % relative to Planck. This result builds from a series of KiDS-1000 analyses where we validate our methodology with variable depth mock galaxy surveys, our lensing calibration with image simulations and null-tests, and our optical-to-near-infrared redshift calibration with multi-band mock catalogues and a spectroscopic-photometric clustering analysis. The systematic uncertainties identified by these analyses are folded through as nuisance parameters in our cosmological analysis. Inspecting the offset between the marginalised posterior distributions, we find that the $S_8$-difference with Planck is driven by a tension in the matter fluctuation amplitude parameter, $sigma_8$. We quantify the level of agreement between the CMB and our large-scale structure constraints using a series of different metrics, finding differences with a significance ranging between $sim! 3,sigma$, when considering the offset in $S_{8}$, and $sim! 2,sigma$, when considering the full multi-dimensional parameter space.
We present weak lensing shear catalogues from the fourth data release of the Kilo-Degree Survey, KiDS-1000, spanning 1006 square degrees of deep and high-resolution imaging. Our `gold-sample of galaxies, with well-calibrated photometric redshift dist ributions, consists of 21 million galaxies with an effective number density of $6.17$ galaxies per square arcminute. We quantify the accuracy of the spatial, temporal, and flux-dependent point-spread function (PSF) model, verifying that the model meets our requirements to induce less than a $0.1sigma$ change in the inferred cosmic shear constraints on the clustering cosmological parameter $S_8 = sigma_8sqrt{Omega_{rm m}/0.3}$. Through a series of two-point null-tests, we validate the shear estimates, finding no evidence for significant non-lensing B-mode distortions in the data. The PSF residuals are detected in the highest-redshift bins, originating from object selection and/or weight bias. The amplitude is, however, shown to be sufficiently low and within our stringent requirements. With a shear-ratio null-test, we verify the expected redshift scaling of the galaxy-galaxy lensing signal around luminous red galaxies. We conclude that the joint KiDS-1000 shear and photometric redshift calibration is sufficiently robust for combined-probe gravitational lensing and spectroscopic clustering analyses.
116 - Y. Park , E. Krause , S. Dodelson 2015
The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. This analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.
The physics of gravity on cosmological scales affects both the rate of assembly of large-scale structure, and the gravitational lensing of background light through this cosmic web. By comparing the amplitude of these different observational signature s, we can construct tests that can distinguish general relativity from its potential modifications. We used the latest weak gravitational lensing dataset from the Kilo-Degree Survey, KiDS-1000, in conjunction with overlapping galaxy spectroscopic redshift surveys BOSS and 2dFLenS, to perform the most precise existing amplitude-ratio test. We measured the associated E_G statistic with 15-20% errors, in five dz = 0.1 tomographic redshift bins in the range 0.2 < z < 0.7, on projected scales up to 100 Mpc/h. The scale-independence and redshift-dependence of these measurements are consistent with the theoretical expectation of general relativity in a Universe with matter density Omega_m = 0.27 +/- 0.04. We demonstrate that our results are robust against different analysis choices, including schemes for correcting the effects of source photometric redshift errors, and compare the performance of angular and projected galaxy-galaxy lensing statistics.
100 - E. J. Baxter , Y. Omori , C. Chang 2018
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to pl ace tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES year one joint probes analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zeldovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا