ﻻ يوجد ملخص باللغة العربية
Due to the drastically different intralayer versus interlayer bonding strengths, the mechanical, thermal, and electrical properties of two-dimensional (2D) materials are highly anisotropic between the in-plane and out-of-plane directions. The structural anisotropy may also play a role in chemical reactions, such as oxidation, reduction, and etching. Here, the composition, structure, and electrical properties of mechanically exfoliated WSe2 nano- sheets on SiO2/Si substrates were studied as a function of the extent of thermal oxidation. A major component of the oxidation, as indicated from optical and Raman data, starts from the nano-sheet edges and propagates laterally towards the center. Partial oxidation also occurs in certain areas at the surface of the flakes, which are shown to be highly conductive by microwave impedance microscopy. Using secondary ion mass spectroscopy, we also observed extensive oxidation at the WSe2/SiO2 interface. The combination of multiple microcopy methods can thus provide vital information on the spatial evolution of chemical reactions on 2D materials and the nanoscale electrical properties of the reaction products.
We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag(110) surface using Scanning Tunneling Microscopy and High-Resolution Photoemission Spectroscopy. The results show that silicene nanoribbons present a strong resistance
We studied polycrystalline B2-type Co2FeAl (CFA) full-Heusler alloy based magnetic tunnel junctions (MTJs) fabricated on a Si/SiO2 amorphous substrate. Polycrystalline CFA films with a (001) orientation, a high B2 ordering, and a flat surface were ac
The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear dop
Near-field optical microscopy can be used as a viable route to understand the nanoscale material properties below the diffraction limit. On the other hand, atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are the materials
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in micron-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures