ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunnel magnetoresistance and spin-transfer-torque switching in polycrystalline Co2FeAl full-Heusler alloy magnetic tunnel junctions on Si/SiO2 amorphous substrates

78   0   0.0 ( 0 )
 نشر من قبل Zhenchao Wen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied polycrystalline B2-type Co2FeAl (CFA) full-Heusler alloy based magnetic tunnel junctions (MTJs) fabricated on a Si/SiO2 amorphous substrate. Polycrystalline CFA films with a (001) orientation, a high B2 ordering, and a flat surface were achieved using a MgO buffer layer. A tunnel magnetoresistance (TMR) ratio up to 175% was obtained for an MTJ with a CFA/MgO/CoFe structure on a 7.5-nm-thick MgO buffer. Spin-transfer torque induced magnetization switching was achieved in the MTJs with a 2-nm-thick polycrystalline CFA film as a switching layer. Using a thermal activation model, the intrinsic critical current density (Jc0) was determined to be 8.2 x 10^6 A/cm^2, which is lower than 2.9 x 10^7 A/cm^2, the value for epitaxial CFA-MTJs [Appl. Phys. Lett. 100, 182403 (2012)]. We found that the Gilbert damping constant evaluated using ferromagnetic resonance measurements for the polycrystalline CFA film was ~0.015 and was almost independent of the CFA thickness (2~18 nm). The low Jc0 for the polycrystalline MTJ was mainly attributed to the low damping of the CFA layer compared with the value in the epitaxial one (~0.04).

قيم البحث

اقرأ أيضاً

Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in nonvolatile magnetic random access memories. In order to develop faster memory devices, an improvement of the timescales underlying the current driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process consisting of a domain nucleation time and propagation time, which have different genesis, timescales, and statistical distributions compared to STT switching. We further show that the combination of SOT, STT, and voltage control of magnetic anisotropy (VCMA) leads to reproducible sub-ns switching with a spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT, and VCMA in determining the switching speed and efficiency of MTJ devices.
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic la yer composition by considering $text{Fe}_text{x}text{Co}_{text{1-x}}$ alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO a thermal switching is imaginable. However, even for such a thin barrier the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagentic layer. In our current study it turns out that at the chosen thickness of the ferromagnetic layer pure Fe gives the highest thermal spin-transfer torque.
Understanding the magnetization dynamics induced by spin transfer torques in perpendicularly magnetized magnetic tunnel junction nanopillars and its dependence on material parameters is critical to optimizing device performance. Here we present a mic romagnetic study of spin-torque switching in a disk-shaped element as a function of the free layers exchange constant and disk diameter. The switching is shown to generally occur by 1) growth of the magnetization precession amplitude in the element center; 2) an instability in which the reversing region moves to the disk edge, forming a magnetic domain wall; and 3) the motion of the domain wall across the element. For large diameters and small exchange, step 1 leads to a droplet with a fully reversed core that experiences a drift instability (step 2). While in the opposite case (small diameters and large exchange), the central region of the disk is not fully reversed before step 2 occurs. The origin of the micromagnetic structure is shown to be the disks non-uniform demagnetization field. Faster, more coherence and energy efficient switching occur with larger exchange and smaller disk diameters, showing routes to increase device performance.
68 - Suyogya Karki 2020
The magnetic tunnel junction is a cornerstone of spintronic devices and circuits, providing the main way to convert between magnetic and electrical information. In state-of-the-art magnetic tunnel junctions, magnesium oxide is used as the tunnel barr ier between magnetic electrodes, providing a uniquely large tunnel magnetoresistance at room temperature. However, the wide bandgap and band alignment of magnesium oxide-iron systems increases the resistance-area product and causes challenges of device-to-device variability and tunnel barrier degradation under high current. Here, we study using first principles narrower-bandgap scandium nitride tunneling properties and transport in magnetic tunnel junctions in comparison to magnesium oxide. These simulations demonstrate a high tunnel magnetoresistance in Fe/ScN/Fe MTJs via {Delta}_1 and {Delta}_2 symmetry filtering with low wavefunction decay rates, allowing a low resistance-area product. The results show that scandium nitride could be a new tunnel barrier material for magnetic tunnel junction devices to overcome variability and current-injection challenges.
We simulate the spin torque-induced reversal of the magnetization in thin disks with perpendicular anisotropy at zero temperature. Disks typically smaller than 20 nm in diameter exhibit coherent reversal. A domain wall is involved in larger disks. We derive the critical diameter of this transition. Using a proper definition of the critical voltage, a macrospin model can account perfectly for the reversal dynamics when the reversal is coherent. The same critical voltage appears to match with the micromagnetics switching voltage regardless of the switching path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا