ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas phase formation of the prebiotic molecule formamide: insights from new quantum computations

78   0   0.0 ( 0 )
 نشر من قبل Cecilia Ceccarelli Prof
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New insights into the formation of interstellar formamide, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction NH2 + H2CO -> NH2CHO + H. Contrarily to what previously suggested, this reaction is essentially barrierless and can, therefore, occur under the low temperature conditions of interstellar objects thus providing a facile formation route of formamide. The rate coefficient parameters for the reaction channel leading to NH2CHO + H have been calculated to be A = 2.6x10^{-12} cm^3 s^{-1}, beta = -2.1 and gamma = 26.9 K in the range of temperatures 10-300 K. Including these new kinetic data in a refined astrochemical model, we show that the proposed mechanism can well reproduce the abundances of formamide observed in two very different interstellar objects: the cold envelope of the Sun-like protostar IRAS16293-2422 and the molecular shock L1157-B2. Therefore, the major conclusion of this Letter is that there is no need to invoke grain-surface chemistry to explain the presence of formamide provided that its precursors, NH2 and H2CO, are available in the gas-phase.

قيم البحث

اقرأ أيضاً

Aims. Formamide (HCONH2) is the simplest molecule containing the peptide bond first detected in the gas phase in Orion-KL and SgrB2. In recent years, it has been observed in high temperature regions such as hot corinos, where thermal desorption is re sponsible for the sublimation of frozen mantles into the gas phase. The interpretation of observations can benefit from information gathered in the laboratory, where it is possible to simulate the thermal desorption process and to study formamide under simulated space conditions such as UV irradiation. Methods. Here, two laboratory analyses are reported: we studied formamide photo-stability under UV irradiation when it is adsorbed by space relevant minerals at 63 K and in the vacuum regime. We also investigated temperature programmed desorption of pure formamide ice in the presence of TiO2 dust before and after UV irradiation. Results. Through these analyses, the effects of UV degradation and the interaction between formamide and different minerals are compared.We find that silicates, both hydrates and anhydrates, offer molecules a higher level of protection from UV degradation than mineral oxides. The desorption temperature found for pure formamide is 220 K. The desorption temperature increases to 250 K when the formamide desorbs from the surface of TiO2 grains. Conclusions. Through the experiments outlined here, it is possible to follow the desorption of formamide and its fragments, simulate the desorption process in star forming regions and hot corinos, and constrain parameters such as the thermal desorption temperature of formamide and its fragments and the binding energies involved. Our results offer support to observational data and improve our understanding of the role of the grain surface in enriching the chemistry in space.
200 - Juan Li , Junzhi Wang , Xing Lu 2021
Peptide bonds, as the molecular bridges that connect amino acids, are crucial to the formation of proteins. Searches and studies of molecules with embedded peptide-like bonds are thus important for the understanding of protein formation in space. Her e we report the first tentative detection of propionamide (C2H5CONH2), the largest peptide-like molecule detected in space toward Sagittarius B2(N1) at a position called N1E that is slightly offset from the continuum peak. A new laboratory measurements of the propionamide spectrum were carried out in the 9-461 GHz, which provide good opportunity to check directly for the transition frequencies of detected interstellar lines of propionamide. Our observing result indicates that propionamide emission comes from the warm, compact cores in Sagittarius B2, in which massive protostellars are forming. The column density of propionamide toward Sgr B2(N1E) was derived to be 1.5times 10^{16} cm^-2, which is three fifths of that of acetamide, and one nineteenth of that of formamide. This detection suggests that large peptide-like molecules can form and survive during star-forming process and may form more complex molecules in the interstellar medium. The detection of propionamide bodes well for the presence of polypeptides, as well as other complex prebiotic molecules in the interstellar medium.
A ground-based neutron monitor is a standard tool to measure cosmic ray variability near Earth, and it is crucially important to know its yield function for primary cosmic rays. Although there are several earlier theoretically calculated yield functi ons, none of them agrees with experimental data of latitude surveys of sea-level neutron monitors, thus suggesting for an inconsistency. A newly computed yield function of the standard sea-level 6NM64 neutron monitor is presented here separately for primary cosmic ray protons and $alpha-$particles, the latter representing also heavier species of cosmic rays. The computations have been done using the GEANT-4 Planetocosmics Monte-Carlo tool and a realistic curved atmospheric model. For the first time, an effect of the geometrical correction of the neutron monitor effective area, related to the finite lateral expansion of the cosmic ray induced atmospheric cascade, is considered, that was neglected in the previous studies. This correction slightly enhances the relative impact of higher-energy cosmic rays (energy above 5--10 GeV/nucleon) in neutron monitor count rate. The new computation finally resolves the long-standing problem of disagreement between the theoretically calculated spatial variability of cosmic rays over the globe and experimental latitude surveys. The newly calculated yield function, corrected for this geometrical factor, appears fully consistent with the experimental latitude surveys of neutron monitors performed during three consecutive solar minima in 1976--77, 1986--87 and 1996--97. Thus, we provide a new yield function of the standard sea-level neutron monitor 6NM64 that is validated against experimental data.
The molecular gas serves as a key probe of the complex interplay between black hole accretion and star formation in the host galaxies of active galactic nuclei (AGNs). We use CO(2-1) observations from a new ALMA survey, in conjunction with literature measurements, to investigate the molecular gas properties of a representative sample of 40 z<0.3 Palomar-Green quasars, the largest and most sensitive study of molecular gas emission to date for nearby quasars. We find that the AGN luminosity correlates with both the CO luminosity and black hole mass, suggesting that AGN activity is loosely coupled to the cold gas reservoir of the host. The observed strong correlation between host galaxy total infrared luminosity and AGN luminosity arises from their common dependence on the molecular gas. We argue that the total infrared luminosity, at least for low-redshift quasars, can be used to derive reliable star formation rates for the host galaxy. The host galaxies of low-redshift quasars have molecular gas content similar to that of star-forming galaxies of comparable stellar mass. Moreover, they share similar gas kinematics, as evidenced by their CO Tully-Fisher relation and the absence of detectable molecular outflows down to sensitive limits. There is no sign that AGN feedback quenches star formation for the quasars in our sample. On the contrary, the abundant gas supply forms stars prodigiously, at a rate that places most of them above the star-forming main sequence and with an efficiency that rivals that of starburst systems.
A large effort has been made to detect warm gas in the planet formation zone of circumstellar discs using space and ground-based near infrared facilities. GV Tau N, the most obscured component of the GV Tau system, is an outstanding source, being one of the first targets detected in HCN and the only one detected in CH$_4$ so far. Although near infrared observations have shed light on its chemical content, the physical structure and kinematics of the circumstellar matter remained unknown. We use interferometric images of the HCN 3-2 and $^{13}$CO 3-2 lines, and far-IR observations of $^{13}$CO, HCN, CN and H$_2$O transitions to discern the morphology, kinematics, and chemistry of the dense gas close to the star. These observations constitute the first detection of H$_2$O towards GV Tau N. Moreover, ALMA high spatial resolution (~ 7 au) images of the continuum at 1.1 mm and the HCN 3-2 line resolve different gas components towards GV Tau N, a gaseous disc with R~25 au, an ionized jet, and one (or two) molecular outflows. The asymmetric morphology of the gaseous disc shows that it has been eroded by the jet. All observations can be explained if GV Tau N is binary, and the primary component has a highly inclined individual disc relative to the circumbinary disc. We discuss the origin of the water and the other molecules emission according to this scenario. In particular, we propose that the water emission would come from the disrupted gaseous disc and the molecular outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا