ﻻ يوجد ملخص باللغة العربية
A ground-based neutron monitor is a standard tool to measure cosmic ray variability near Earth, and it is crucially important to know its yield function for primary cosmic rays. Although there are several earlier theoretically calculated yield functions, none of them agrees with experimental data of latitude surveys of sea-level neutron monitors, thus suggesting for an inconsistency. A newly computed yield function of the standard sea-level 6NM64 neutron monitor is presented here separately for primary cosmic ray protons and $alpha-$particles, the latter representing also heavier species of cosmic rays. The computations have been done using the GEANT-4 Planetocosmics Monte-Carlo tool and a realistic curved atmospheric model. For the first time, an effect of the geometrical correction of the neutron monitor effective area, related to the finite lateral expansion of the cosmic ray induced atmospheric cascade, is considered, that was neglected in the previous studies. This correction slightly enhances the relative impact of higher-energy cosmic rays (energy above 5--10 GeV/nucleon) in neutron monitor count rate. The new computation finally resolves the long-standing problem of disagreement between the theoretically calculated spatial variability of cosmic rays over the globe and experimental latitude surveys. The newly calculated yield function, corrected for this geometrical factor, appears fully consistent with the experimental latitude surveys of neutron monitors performed during three consecutive solar minima in 1976--77, 1986--87 and 1996--97. Thus, we provide a new yield function of the standard sea-level neutron monitor 6NM64 that is validated against experimental data.
Neutron monitors have been the premier ground-based instruments for monitoring the near-Earth cosmic ray flux for more than 70 years. It is essential to continue with such measurements in order to extend this unique long-term time series. Moreover, w
Muon detectors and neutron monitors were recently installed at Syowa Station, in the Antarctic, to observe different types of secondary particles resulting from cosmic ray interactions simultaneously from the same location. Continuing observations wi
This paper introduces a new analytical method for the determination of the coverage area modeling the Earth as an oblate ellipsoid of rotation. Starting from the knowledge of the satellites position vector and the direction of the navigation antenna
Geomagnetically-aligned density structures with a range of sizes exist in the near-Earth plasma environment, including 10-100 km-wide VLF/HF wave-ducting structures. Their small diameters and modest density enhancements make them difficult to observe
Energetic particle fluxes in the outer magnetosphere present a significant challenge to modelling efforts as they can vary by orders of magnitude in response to solar wind driving conditions. In this article, we demonstrate the ability to propagate t