ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Monitor Yield Function: New Improved computations

65   0   0.0 ( 0 )
 نشر من قبل Ilya Usoskin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A ground-based neutron monitor is a standard tool to measure cosmic ray variability near Earth, and it is crucially important to know its yield function for primary cosmic rays. Although there are several earlier theoretically calculated yield functions, none of them agrees with experimental data of latitude surveys of sea-level neutron monitors, thus suggesting for an inconsistency. A newly computed yield function of the standard sea-level 6NM64 neutron monitor is presented here separately for primary cosmic ray protons and $alpha-$particles, the latter representing also heavier species of cosmic rays. The computations have been done using the GEANT-4 Planetocosmics Monte-Carlo tool and a realistic curved atmospheric model. For the first time, an effect of the geometrical correction of the neutron monitor effective area, related to the finite lateral expansion of the cosmic ray induced atmospheric cascade, is considered, that was neglected in the previous studies. This correction slightly enhances the relative impact of higher-energy cosmic rays (energy above 5--10 GeV/nucleon) in neutron monitor count rate. The new computation finally resolves the long-standing problem of disagreement between the theoretically calculated spatial variability of cosmic rays over the globe and experimental latitude surveys. The newly calculated yield function, corrected for this geometrical factor, appears fully consistent with the experimental latitude surveys of neutron monitors performed during three consecutive solar minima in 1976--77, 1986--87 and 1996--97. Thus, we provide a new yield function of the standard sea-level neutron monitor 6NM64 that is validated against experimental data.

قيم البحث

اقرأ أيضاً

Neutron monitors have been the premier ground-based instruments for monitoring the near-Earth cosmic ray flux for more than 70 years. It is essential to continue with such measurements in order to extend this unique long-term time series. Moreover, w ith the recent interest of the aviation industry to space weather effects, and especially the radiation risk posed by solar energetic particles and galactic cosmic rays, it is vital to extend the current neutron monitor network in order to provide near-real-time measurements to the space weather community. In this paper we discuss a new electronics system that was retrofitted to the SANAE neutron monitor in Antarctica. We present initial results from this system, featuring very high temporal resolution and discuss the techniques applied to the data analysis. Based on these successful upgrades, we are confident that this system can be used to rejuvenate the aligning neutron monitor network, and even possibly to revive some of the decommissioned instruments.
72 - C. Kato , W. Kihara , Y. Ko 2021
Muon detectors and neutron monitors were recently installed at Syowa Station, in the Antarctic, to observe different types of secondary particles resulting from cosmic ray interactions simultaneously from the same location. Continuing observations wi ll give new insight into the response of muon detectors to atmospheric and geomagnetic effects. Operation began in February, 2018 and the system has been stable with a duty-cycle exceeding 94%. Muon data shows a clear seasonal variation, which is expected from the atmospheric temperature effect. We verified successful operation by showing that the muon and neutron data are consistent with those from other locations by comparing intensity variations during a space weather event. We have established a web page to make real time data available with interactive graphics (http://polaris.nipr.ac.jp/~cosmicrays/).
This paper introduces a new analytical method for the determination of the coverage area modeling the Earth as an oblate ellipsoid of rotation. Starting from the knowledge of the satellites position vector and the direction of the navigation antenna line of sight, the surface generated by the intersection of the oblate ellipsoid and the assumed conical field of view is decomposed in many ellipses, obtained by cutting the Earths surface with every plane containing the navigation antenna line of sight. The geometrical parameters of each ellipse can be derived analytically together with the points intersection of the conical field of view with the ellipse itself by assuming a proper value of the half-aperture angle or the minimum elevation angle from which the satellite can be considered visible from the Earths surface. The method can be applied for different types of pointing (geocentric, geodetic and generic) according to the mission requirements. Finally, numerical simulations compare the classical spherical approach with the new ellipsoidal method in the determination of the coverage area, and also show the dependence of the coverage errors on some relevant orbital parameters.
Geomagnetically-aligned density structures with a range of sizes exist in the near-Earth plasma environment, including 10-100 km-wide VLF/HF wave-ducting structures. Their small diameters and modest density enhancements make them difficult to observe , and there is limited evidence for any of the several formation mechanisms proposed to date. We present a case study of an event on 26 August 2014 where a travelling ionospheric disturbance (TID) shortly precedes the formation of a complex collection of field-aligned ducts, using data obtained by the Murchison Widefield Array (MWA) radio telescope. Their spatiotemporal proximity leads us to suggest a causal interpretation. Geomagnetic conditions were quiet at the time, and no obvious triggers were noted. Growth of the structures proceeds rapidly, within 0.5 hr of the passage of the TID, attaining their peak prominence 1-2 hr later and persisting for several more hours until observations ended at local dawn. Analyses of the next two days show field-aligned structures to be preferentially detectable under quiet rather than active geomagnetic conditions. We used a raster scanning strategy facilitated by the speed of electronic beamforming to expand the quasi-instantaneous field of view of the MWA by a factor of three. These observations represent the broadest angular coverage of the ionosphere by a radio telescope to date.
Energetic particle fluxes in the outer magnetosphere present a significant challenge to modelling efforts as they can vary by orders of magnitude in response to solar wind driving conditions. In this article, we demonstrate the ability to propagate t est particles through global MHD simulations to a high level of precision and use this to map the cross-field radial transport associated with relativistic electrons undergoing drift orbit bifurcations (DOBs). The simulations predict DOBs primarily occur within an Earth radius of the magnetopause loss cone and appears significantly different for southward and northward interplanetary magnetic field orientations. The changes to the second invariant are shown to manifest as a dropout in particle fluxes with pitch angles close to 90$^circ$ and indicate DOBs are a cause of butterfly pitch angle distributions within the night-time sector. The convective electric field, not included in previous DOB studies, is found to have a significant effect on the resultant long term transport, and losses to the magnetopause and atmosphere are identified as a potential method for incorporating DOBs within Fokker-Planck transport models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا