ﻻ يوجد ملخص باللغة العربية
The magnetic inhomogeneity of the A-phase in MnSi chiral magnet is identified for the first time from the precise measurements of transverse magnetoresistance (MR) anisotropy. The area inside the A-phase (A-phase core) corresponds to isotropic MR having no confinement to the MnSi crystal lattice. Per contra, the MR becomes anisotropic both on the border of the A-phase and in other magnetic phases, the strongest magnetic scattering being observed when external magnetic field applied along [001] or [00-1] directions. We argue here that the established MR features prove the presence of two different types of the skyrmion lattices inside the A-phase, and the dense skyrmion state of the A-phase core is built from individual skyrmions similar to Abrikosov-type magnetic vortexes.
We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin li
Using small-angle neutron scattering (SANS), we investigate the deformation of the magnetic skyrmion lattice in bulk single-crystalline MnSi under electric current flow. A significant broadening of the skyrmion-lattice-reflection peaks was observed i
We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are obse
We report high-precision small angle neutron scattering of the orientation of the skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the skyrmion lattice may be accurately
Precision measurements of the magnetization and ac susceptibility of Cu$_2$0SeO$_3$ are reported for magnetic fields along different crystallographic directions, focussing on the border between the conical and the field-polarized state for a magnetic