ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic magneto-crystalline coupling of the skyrmion lattice in MnSi

253   0   0.0 ( 0 )
 نشر من قبل Yongkang Luo Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.



قيم البحث

اقرأ أيضاً

339 - T. Adams , A. Chacon , M. Wagner 2012
We report a long-wavelength helimagnetic superstructure in bulk samples of the ferrimagnetic insulator Cu2OSeO3. The magnetic phase diagram associated with the helimagnetic modulation inferred from small angle neutron scattering and magnetisation mea surements includes a skyrmion lattice phase and is strongly reminiscent of MnSi, FeGe and Fe1-xCoxSi, i.e., binary isostructural siblings of Cu2OSeO3 that order helimagnetically. The temperature dependence of the specific heat of Cu2OSeO3 is characteristic of nearly critical spin fluctuations at the helimagnetic transition. This provides putative evidence for effective spin currents as the origin of enhancements of the magneto-dielectric response instead of atomic displacements considered so far.
We report an experimental study of the emergence of non-trivial topological winding and long-range order across the paramagnetic to skyrmion lattice transition in the transition metal helimagnet MnSi. Combining measurements of the susceptibility with small angle neutron scattering, neutron resonance spin echo spectroscopy and all-electrical microwave spectroscopy, we find evidence of skyrmion textures in the paramagnetic state exceeding $10^3$AA with lifetimes above several 10$^{-9}$s. Our experimental findings establish that the paramagnetic to skyrmion lattice transition in MnSi is well-described by the Landau soft-mode mechanism of weak crystallization, originally proposed in the context of the liquid to crystal transition. As a key aspect of this theoretical model, the modulation-vectors of periodic small amplitude components of the magnetization form triangles that add to zero. In excellent agreement with our experimental findings, these triangles of the modulation-vectors entail the presence of the non-trivial topological winding of skyrmions already in the paramagnetic state of MnSi when approaching the skyrmion lattice transition.
77 - T. Adams , M. Garst , A. Bauer 2018
We report high-precision small angle neutron scattering of the orientation of the skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the skyrmion lattice may be accurately described as a triple-$vec{Q}$ state, where the modulus $vert vec{Q} vert$ is constant and the wave vectors enclose rigid angles of $120^{circ}$. Along a great circle across $langle 100rangle$, $langle 110rangle$, and $langle 111rangle$ the normal to the skyrmion-lattice plane varies systematically by $pm3^{circ}$ with respect to the field direction, while the in-plane alignment displays a reorientation by $15^{circ}$ for magnetic field along $langle 100rangle$. Our observations are qualitatively and quantitatively in excellent agreement with an effective potential, that is determined by the symmetries of the tetrahedral point group $T$ and includes contributions up to sixth-order in spin-orbit coupling, providing a full account of the effect of cubic magnetocrystalline anisotropies on the skyrmion lattice in MnSi.
Transverse-field muon-spin rotation ($mu$SR) experiments were performed on a single crystal sample of the non-centrosymmetric system MnSi. The observed angular dependence of the muon precession frequencies matches perfectly the one of the Mn-dipolar fields acting on the muons stopping at a 4a position of the crystallographic structure. The data provide a precise determination of the magnetic dipolar tensor. In addition, we have calculated the shape of the field distribution expected below the magnetic transition temperature $T_C$ at the 4a muon-site when no external magnetic field is applied. We show that this field distribution is consistent with the one reported by zero-field $mu$SR studies. Finally, we present ab initio calculations based on the density-functional theory which confirm the position of the muon stopping site inferred from transverse-field $mu$SR. In view of the presented evidence we conclude that the $mu$SR response of MnSi can be perfectly and fully understood without invoking a hypothetical magnetic polaron state.
Using small-angle neutron scattering (SANS), we investigate the deformation of the magnetic skyrmion lattice in bulk single-crystalline MnSi under electric current flow. A significant broadening of the skyrmion-lattice-reflection peaks was observed i n the SANS pattern for current densities greater than a threshold value j_t ~ 1 MA/m^2 (10^6 A/m^2). We show this peak broadening to originate from a spatially inhomogeneous rotation of the skyrmion lattice, with an inverse rotation sense observed for opposite sample edges aligned with the direction of current flow. The peak broadening (and the corresponding skyrmion lattice rotations) remain finite even after switching off the electric current. These results indicate that skyrmion lattices under current flow experience significant friction near the sample edges, and plastic deformation due to pinning effects, these being important factors that must be considered for the anticipated skyrmion-based applications in chiral magnets at the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا