ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

83   0   0.0 ( 0 )
 نشر من قبل Andrew H. Jaffe
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlations of CMB data, using the hybrid approach employed previously: pixel-based at $ell<30$ and a Gaussian approximation to the distribution of spectra at higher $ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models, allowing further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction. Improvements in processing and instrumental models further reduce uncertainties. For temperature, we perform an analysis of end-to-end instrumental simulations fed into the data processing pipeline; this does not reveal biases from residual instrumental systematics. The $Lambda$CDM cosmological model continues to offer a very good fit to Planck data. The slope of primordial scalar fluctuations, $n_s$, is confirmed smaller than unity at more than 5{sigma} from Planck alone. We further validate robustness against specific extensions to the baseline cosmology. E.g., the effective number of neutrino species remains compatible with the canonical value of 3.046. This first detailed analysis of Planck polarization concentrates on E modes. At low $ell$ we use temperature at all frequencies and a subset of polarization. The frequency range improves CMB-foreground separation. Within the baseline model this requires a reionization optical depth $tau=0.078pm0.019$, significantly lower than without high-frequency data for explicit dust monitoring. At high $ell$ we detect residual errors in E, typically O($mu$K$^2$); we recommend temperature alone as the high-$ell$ baseline. Nevertheless, Planck high-$ell$ polarization allows a separate determination of $Lambda$CDM parameters consistent with those from temperature alone.

قيم البحث

اقرأ أيضاً

This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter $tau$ to better than 15% (in combination with with the other low- and high-$ell$ likelihoods). We also update the 2015 baseline low-$ell$ joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker $tau$ constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the $Lambda$CDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-$ell$ implementations, we estimate the consistency of the results to be better than the 0.5$sigma$ level. Minor curiosities already present before (differences between $ell$<800 and $ell$>800 parameters or the preference for more smoothing of the $C_ell$ peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged)
We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 <= l <= 2500. The main source of error at l <= 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ls. For l < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz through a physically motivated Bayesian component separation technique. At l >= 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained by Planck by l <= 1500. For example, we report a 5.4 sigma deviation from n_s /= 1. Considering various extensions beyond the standard model, we find no indication of significant departures from the LCDM framework. Finally, we report a tension between the best-fit LCDM model and the low-l spectrum in the form of a power deficit of 5-10% at l <~ 40, significant at 2.5-3 sigma. We do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent dataset. (Abridged)
We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the Lambda-cdm best-fit solution with respect to previously-released results, and the construction of frequentist c onfidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman--Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the CMB combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit $M_ u < 0.26 eV$ ($95%$ confidence) from the CMB+lensing+BAO data combination.
We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some pol arization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The Cold Spot is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا