ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck 2013 results. XV. CMB power spectra and likelihood

161   0   0.0 ( 0 )
 نشر من قبل Fran\\c{c}ois Bouchet R.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 <= l <= 2500. The main source of error at l <= 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ls. For l < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz through a physically motivated Bayesian component separation technique. At l >= 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained by Planck by l <= 1500. For example, we report a 5.4 sigma deviation from n_s /= 1. Considering various extensions beyond the standard model, we find no indication of significant departures from the LCDM framework. Finally, we report a tension between the best-fit LCDM model and the low-l spectrum in the form of a power deficit of 5-10% at l <~ 40, significant at 2.5-3 sigma. We do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent dataset. (Abridged)

قيم البحث

اقرأ أيضاً

This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter $tau$ to better than 15% (in combination with with the other low- and high-$ell$ likelihoods). We also update the 2015 baseline low-$ell$ joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker $tau$ constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the $Lambda$CDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-$ell$ implementations, we estimate the consistency of the results to be better than the 0.5$sigma$ level. Minor curiosities already present before (differences between $ell$<800 and $ell$>800 parameters or the preference for more smoothing of the $C_ell$ peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged)
This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlations of CMB data, using the hybrid approach employed previously: pixel-based at $ell<30$ and a Gaussian approximation to the distribution of spectra at h igher $ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models, allowing further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction. Improvements in processing and instrumental models further reduce uncertainties. For temperature, we perform an analysis of end-to-end instrumental simulations fed into the data processing pipeline; this does not reveal biases from residual instrumental systematics. The $Lambda$CDM cosmological model continues to offer a very good fit to Planck data. The slope of primordial scalar fluctuations, $n_s$, is confirmed smaller than unity at more than 5{sigma} from Planck alone. We further validate robustness against specific extensions to the baseline cosmology. E.g., the effective number of neutrino species remains compatible with the canonical value of 3.046. This first detailed analysis of Planck polarization concentrates on E modes. At low $ell$ we use temperature at all frequencies and a subset of polarization. The frequency range improves CMB-foreground separation. Within the baseline model this requires a reionization optical depth $tau=0.078pm0.019$, significantly lower than without high-frequency data for explicit dust monitoring. At high $ell$ we detect residual errors in E, typically O($mu$K$^2$); we recommend temperature alone as the high-$ell$ baseline. Nevertheless, Planck high-$ell$ polarization allows a separate determination of $Lambda$CDM parameters consistent with those from temperature alone.
The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satelli te. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3 sigma). However, we find little evidence for non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. A power asymmetry is now found to persist to scales corresponding to about l=600, and can be described in the low-l regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend to arbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence for a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is still lacking.
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only esti mator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination $sigma_8 Omega_m^{0.25} = 0.591pm 0.021$. We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Plancks sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model.
Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky which has been well measured for more than 30 years, and has an accepted amplitude of v/c = 0.00123, or v = 369km/s. In addition to this signal generated by Doppler boosting of the CMB monopole, our motion also modulates and aberrates the CMB temperature fluctuations (as well as every other source of radiation at cosmological distances). This is an order 0.1% effect applied to fluctuations which are already one part in roughly one hundred thousand, so it is quite small. Nevertheless, it becomes detectable with the all-sky coverage, high angular resolution, and low noise levels of the Planck satellite. Here we report a first measurement of this velocity signature using the aberration and modulation effects on the CMB temperature anisotropies, finding a component in the known dipole direction, (l,b)=(264, 48) [deg], of 384km/s +- 78km/s (stat.) +- 115km/s (syst.). This is a significant confirmation of the expected velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا