ﻻ يوجد ملخص باللغة العربية
Let $mathcal{I} subset mathbb{N}$ be an infinite subset, and let ${a_i}_{i in mathcal{I}}$ be a sequence of nonzero real numbers indexed by $mathcal{I}$ such that there exist positive constants $m, C_1$ for which $|a_i| leq C_1 cdot i^m$ for all $i in mathcal{I}$. Furthermore, let $c_i in [-1,1]$ be defined by $c_i = frac{a_i}{C_1 cdot i^m}$ for each $i in mathcal{I}$, and suppose the $c_i$s are equidistributed in $[-1,1]$ with respect to a continuous, symmetric probability measure $mu$. In this paper, we show that if $mathcal{I} subset mathbb{N}$ is not too sparse, then the sequence ${a_i}_{i in mathcal{I}}$ fails to obey Benfords Law with respect to arithmetic density in any sufficiently large base, and in fact in any base when $mu([0,t])$ is a strictly convex function of $t in (0,1)$. Nonetheless, we also provide conditions on the density of $mathcal{I} subset mathbb{N}$ under which the sequence ${a_i}_{i in mathcal{I}}$ satisfies Benfords Law with respect to logarithmic density in every base. As an application, we apply our general result to study Benfords Law-type behavior in the leading digits of Frobenius traces of newforms of positive, even weight. Our methods of proof build on the work of Jameson, Thorner, and Ye, who studied the particular case of newforms without complex multiplication.
We discuss properties of integers in base 3/2. We also introduce many new sequences related to base 3/2. Some sequences discuss patterns related to integers in base 3/2. Other sequence are analogues of famous base-10 sequences: we discuss powers of 3
In this paper we show how the cross-disciplinary transfer of techniques from Dynamical Systems Theory to Number Theory can be a fruitful avenue for research. We illustrate this idea by exploring from a nonlinear and symbolic dynamics viewpoint certai
The Newcomb-Benford Law, which is also called the first digit phenomenon, has applications in diverse phenomena ranging from social and computer networks, engineering systems, natural sciences, and accounting. In forensics, it has been used to determ
Given a finite set of nonnegative integers A with no 3-term arithmetic progressions, the Stanley sequence generated by A, denoted S(A), is the infinite set created by beginning with A and then greedily including strictly larger integers which do not
In 1998, Allouche, Peyri`{e}re, Wen and Wen showed that the Hankel determinant $H_n$ of the Thue-Morse sequence over ${-1,1}$ satisfies $H_n/2^{n-1}equiv 1~(mathrm{mod}~2)$ for all $ngeq 1$. Inspired by this result, Fu and Han introduced emph{apwenia