ﻻ يوجد ملخص باللغة العربية
We discuss properties of integers in base 3/2. We also introduce many new sequences related to base 3/2. Some sequences discuss patterns related to integers in base 3/2. Other sequence are analogues of famous base-10 sequences: we discuss powers of 3 and 2, Look-and-say, and sorted and reverse sorted Fibonaccis. The eventual behavior of sorted and reverse sorted Fibs leads to special Pinocchio and Oihcconip sequences respectively.
We delve into the connection between base $frac{3}{2}$ and the greedy partition of non-negative integers into 3-free sequences. Specifically, we find a fractal structure on strings written with digits 0, 1, and 2. We use this structure to prove that
We give a characterization of all matrices $A,B,C in mathbb{F}_{2}^{m times m}$ which generate a $(0,m,3)$-net in base $2$ and a characterization of all matrices $B,Cinmathbb{F}_{2}^{mathbb{N}timesmathbb{N}}$ which generate a $(0,2)$-sequence in base $2$.
We discuss two different systems of number representations that both can be called base 3/2. We explain how they are connected. Unlike classical fractional extension, these two systems provide a finite representation for integers. We also discuss a c
Let $mathcal{I} subset mathbb{N}$ be an infinite subset, and let ${a_i}_{i in mathcal{I}}$ be a sequence of nonzero real numbers indexed by $mathcal{I}$ such that there exist positive constants $m, C_1$ for which $|a_i| leq C_1 cdot i^m$ for all $i i
In 2009, Grant, Shallit, and Stoll constructed a large family of pseudorandom sequences, called generalized Rudin--Shapiro sequences, for which they established some results about the average of discrete correlation coefficients of order 2 in cases w