ترغب بنشر مسار تعليمي؟ اضغط هنا

A Study of Active Shielding Optimized for 1-80 keV Wide-Band X-ray Detector in Space

91   0   0.0 ( 0 )
 نشر من قبل Yoshihiro Furuta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yoshihiro Furuta




اسأل ChatGPT حول البحث

Active shielding is an effective technique to reduce background signals in hard X-ray detectors and to enable observing darker sources with high sensitivity in space. Usually the main detector is covered with some shield detectors made of scintillator crystals such as BGO (Bi$_4$Ge$_3$O$_{12}$), and the background signals are filtered out using anti-coincidence among them. Japanese X-ray observing satellites Suzaku and ASTRO-H employed this technique in their hard X-ray instruments observing at > 10 keV. In the next generation X-ray satellites, such as the NGHXT proposal, a single hybrid detector is expected to cover both soft (1-10 keV) and hard (> 10 keV) X-rays for effectiveness. However, present active shielding is not optimized for the soft X-ray band, 1-10 keV. For example, Bi and Ge, which are contained in BGO, have their fluorescence emission lines around 10 keV. These lines appear in the background spectra obtained by ASTRO-H Hard X-ray Imager, which are non-negligible in its observation energy band of 5-80 keV. We are now optimizing the design of active shields for both soft and hard X-rays at the same time. As a first step, we utilized a BGO crystal as a default material, and measured the L lines of Bi and K lines of Ge from it using the X-ray SOIPIX, XRPIX.



قيم البحث

اقرأ أيضاً

We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 $mu$m CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e$^{-}$ + 1.5 e$^{-}$/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 $^{circ}$C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.
117 - Sebastian Diebold 2013
Protons that are trapped in the Earths magnetic field are one of the main threats to astronomical X-ray observatories. Soft protons, in the range from tens of keV up to a few MeV, impinging on silicon X-ray detectors can lead to a significant degrada tion of the detector performance. Especially in low earth orbits an enhancement of the soft proton flux has been found. A setup to irradiate detectors with soft protons has been constructed at the Van-de-Graaff accelerator of the Physikalisches Institut of the University of Tubingen. Key advantages are a high flux uniformity over a large area, to enable irradiations of large detectors, and a monitoring system for the applied fluence, the beam uniformity, and the spectrum, that allows testing of detector prototypes in early development phases, when readout electronics are not yet available. Two irradiation campaigns have been performed so far with this setup. The irradiated detectors are silicon drift detectors, designated for the use on-board the LOFT space mission. This paper gives a description of the experimental setup and the associated monitoring system.
Transition Radiation (TR) plays an important role in particle identification in high-energy physics and its characteristics provide a feasible method of energy calibration in the energy range up to 10 TeV, which is of interest for dark matter searche s in cosmic rays. In a Transition Radiation Detector (TRD), the TR signal is superimposed onto the ionization energy loss signal induced by incident charged particles. In order to make the TR signal stand out from the background of ionization energy loss in a significant way, we optimized both the radiators and the detector. We have designed a new prototype of regular radiator optimized for a maximal TR photon yield, combined with the Side-On TRD which is supposed to improve the detection efficiency of TR. We started a test beam experiment with the Side-On TRD at Conseil Europ{e}en pour la Recherche Nucl{e}aire (CERN), and found that the experimental data is consistent with the simulation results.
LiteBIRD is a proposed JAXA satellite mission to measure the CMB B-mode polarization with unprecedented sensitivity ($sigma_rsim 0.001$). To achieve this goal, $4676$ state-of-the-art TES bolometers will observe the whole sky for 3 years from L2. The se detectors, as well as the SQUID readout, are extremely susceptible to EMI and other instrumental disturbances e.g. static magnetic field and vibration. As a result, careful analysis of the interference between the detector system and the rest of the telescope instruments is essential. This study is particularly important during the early phase of the project, in order to address potential problems before the final assembly of the whole instrument. We report our plan for the preparation of a cryogenic testbed to study the interaction between the detectors and other subsystems, especially a polarization modulator unit consisting of a magnetically-rotating half wave plate. We also present the requirements, current status and preliminary results.
With the observation of the gravitational wave event of August 17th 2017 the multi-messenger astronomy era has definitely begun. With the opening of this new panorama, it is necessary to have new instruments and a perfect coordination of the existing observatories. Crystal Eye is a detector aimed at the exploration of the electromagnetic counterpart of the gravitational waves. Such events generated by neutron stars mergers are associated with gamma-ray bursts (GRB). At present, there are few instruments in orbit able to detect photons in the energy range going from tens of keV up to few MeV. These instruments belong to two different old observation concepts: the all sky monitors (ASM) and the telescopes. The detector we propose is a crossover technology, the Crystal Eye: a wide field of view observatory in the energy range from 10 keV to 10 MeV with a pixelated structure. A pathfinder will be launched with Space RIDER in 2022. We here present the preliminary results of the characterization of the first pixel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا