ﻻ يوجد ملخص باللغة العربية
Recently rediscovered black phosphorus is a layered semiconductor with promising electronic and photonic properties. Dynamic control of its bandgap can enable novel device applications and allow for the exploration of new physical phenomena. However, theoretical investigations and photoemission spectroscopy experiments performed on doped black phosphorus through potassium adsorption indicate that in its few-layer form, an exceedingly large electric field in the order of several volts per nanometer is required to effectively tune its bandgap, making the direct electrical control unfeasible. Here we demonstrate the tuning of bandgap in intrinsic black phosphorus using an electric field directly and reveal the unique thickness-dependent bandgap tuning properties, arising from the strong interlayer electronic-state coupling. Furthermore, leveraging a 10-nm-thick black phosphorus in which the field-induced potential difference across the film dominates over the interlayer coupling, we continuously tune its bandgap from ~300 to below 50 milli-electron volts, using a moderate displacement field up to 1.1 volts per nanometer. Such dynamic tuning of bandgap may not only extend the operational wavelength range of tunable black phosphorus photonic devices, but also pave the way for the investigation of electrically tunable topological insulators and topological nodal semimetals.
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to de
The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic control of light propagation by an applied potential. While many materials have been shown to exhibit electrically tunabl
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si
We report a scalable approach to synthesize a large-area (up to 4 mm) thin black phosphorus (BP) film on a flexible substrate. We first deposited a red phosphorus (RP) thin-film on a flexible polyester substrate, followed by its conversion to BP in a
Excitons in semiconductors, bound pairs of excited electrons and holes, can form the basis for new classes of quantum optoelectronic devices. A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (