ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk-stability constraints on the number of arms in spiral galaxies

148   0   0.0 ( 0 )
 نشر من قبل Elena D'Onghia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Elena DOnghia




اسأل ChatGPT حول البحث

A model based on disk-stability criteria to determine the number of spiral arms of a general disk galaxy with an exponential disk, a bulge and a dark halo described by a Hernquist model is presented. The multifold rotational symmetry of the spiral structure can be evaluated analytically once the structural properties of a galaxy, such as the circular speed curve, and the disk surface brightness, are known. By changing the disk mass, these models are aimed at varying the critical length scale parameter of the disk and lead to a different spiral morphology in agreement with prior models. Previous studies based on the swing amplification and disk stability have been applied to constrain the mass-to-light ratio in disk galaxies. This formalism provides an analytic expression to estimate the number of arms expected by swing amplification making its application straight-forward to large surveys. It can be applied to predict the number of arms in the Milky Way as a function of radius and to constrain the mass-to-light ratio in disk galaxies for which photometric and kinematic measurements are available, like in the DiskMass survey. Hence, the halo contribution to the total mass in the inner parts of disk galaxies can be inferred in light of the ongoing and forthcoming surveys.



قيم البحث

اقرأ أيضاً

Spiral structure (both flocculent and Grand Design types) is very rarely observed in dwarf galaxies because the formation of spiral arms requires special conditions. In this work we analyze the sample of about 40 dS-galaxies found by scanning by eye the images of late-type galaxies with $m_B<15^m$ and $M_B>-18^m$ and photometric diameter $D_{25}<12$~kpc. We found that apart from the lower average gas (HI) fraction the other properties of dS-galaxies including the presence of a bar and the isolation index do not differ much from those for dwarf Irr or Sm-types of similar luminosity and rotation velocity (or specific angular momentum).There are practically no dS-galaxies with rotation velocity below 50,--,60~km,sec$^{-1}$. To check the conditions of formation of spiral structure in dwarf galaxies we carried out a series of N-body/hydrodynamic simulations of low-mass stellar-gaseous discy galaxies by varying the model kinematic parameters of discs, their initial thickness, relative masses and scale lengths of stellar and gaseous disc components, and stellar-to-dark halo masses. We came to conclusion that the gravitational mechanism of spiral structure formation is effective only for thin stellar discs, which are non-typical for dwarf galaxies, and for not too slowly rotating galaxies. Therefore, only a small fraction of dwarf galaxies with stellar/gaseous discs have spiral or ring structures. The thicker stellar disc, the more gas is required for the spiral structure to form. The reduced gas content in many dS-galaxies compared to non-spiral ones may be a result of more efficient star formation due to a higher volume gas density thank to the thinner stellar/gaseous discs.
81 - Peeter Tenjes 2017
Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from HI, CO and cold dust ) in the spiral arms of M31, to calculate stability conditions in the galaxy disc and to draw conclusions about possible star formation triggering mechanisms. Methods: We select fourteen spiral arm segments from the de-projected data maps and compare emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre we calculate the effective disc stability parameters and the least stable wavelengths at different distances. For this we utilise a mass distribution model of M31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a minimal value Q_{eff} ~ 1.8 at galactocentric distances 12 - 13 kpc. The least stable wavelengths are rather long, with the minimal values starting from ~ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M31. Instead, external causes should be considered, e.g. interactions with massive gas clouds or dwarf companions of M31.
This letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution $N$-body simulations, we model composite stellar discs, made of kinema tically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.
We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micron HST/NICMOS data. W hile sub-millimeter studies suggested there is a dust-depleted cavity with r=0.35, we find scattered light as close as 0.1 (20-28 AU) from the star, with no visible cavity at H, K, or Ks. We find two small-scaled spiral structures which asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h ~ 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5+3,-4 Mj, in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L and angular differential imaging with Locally Optimized Combination of Images at K and Ks, we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0.5. We reach 5-sigma contrasts limiting companions to planetary masses, 3-4 MJ at 1.0 and 2 MJ at 1.55 using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.
Galaxy flybys are as common as mergers in low redshift universe and are important for galaxy evolution as they involve the exchange of significant amounts of mass and energy. In this study we investigate the effect of minor flybys on the bulges, disk s, and spiral arms of Milky Way mass galaxies for two types of bulges - classical bulges and boxy/peanut pseudobulges. Our N-body simulations comprise of two disk galaxies of mass ratios 10:1 and 5:1, where the disks of the galaxies lie in their orbital plane and the pericenter distance is varied. We performed photometric and kinematic bulge-disk decomposition at regular time steps and traced the evolution of the disk size, spiral structure, bulge sersic index, bulge mass, and bulge angular momentum. Our results show that the main effect on the disks is disk thickening, which is seen as the increase in the ratio of disk scale height to scale radius. The strength of the spiral structure A2/A0 shows small oscillations about the mean time-varying amplitude in the pseudobulge host galaxies. The flyby has no significant effect on non-rotating classical bulge, which shows that these bulges are extremely stable in galaxy interactions. However, the pseudobulges become dynamically hotter in flybys indicating that flybys may play an important role in accelerating the rate of secular evolution in disk galaxies. This effect on pseudobulges is a result of their rotating nature as part of the bar. Also, flybys do not affect the time and strength of bar buckling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا