ﻻ يوجد ملخص باللغة العربية
Spiral structure (both flocculent and Grand Design types) is very rarely observed in dwarf galaxies because the formation of spiral arms requires special conditions. In this work we analyze the sample of about 40 dS-galaxies found by scanning by eye the images of late-type galaxies with $m_B<15^m$ and $M_B>-18^m$ and photometric diameter $D_{25}<12$~kpc. We found that apart from the lower average gas (HI) fraction the other properties of dS-galaxies including the presence of a bar and the isolation index do not differ much from those for dwarf Irr or Sm-types of similar luminosity and rotation velocity (or specific angular momentum).There are practically no dS-galaxies with rotation velocity below 50,--,60~km,sec$^{-1}$. To check the conditions of formation of spiral structure in dwarf galaxies we carried out a series of N-body/hydrodynamic simulations of low-mass stellar-gaseous discy galaxies by varying the model kinematic parameters of discs, their initial thickness, relative masses and scale lengths of stellar and gaseous disc components, and stellar-to-dark halo masses. We came to conclusion that the gravitational mechanism of spiral structure formation is effective only for thin stellar discs, which are non-typical for dwarf galaxies, and for not too slowly rotating galaxies. Therefore, only a small fraction of dwarf galaxies with stellar/gaseous discs have spiral or ring structures. The thicker stellar disc, the more gas is required for the spiral structure to form. The reduced gas content in many dS-galaxies compared to non-spiral ones may be a result of more efficient star formation due to a higher volume gas density thank to the thinner stellar/gaseous discs.
A model based on disk-stability criteria to determine the number of spiral arms of a general disk galaxy with an exponential disk, a bulge and a dark halo described by a Hernquist model is presented. The multifold rotational symmetry of the spiral st
We propose a new theory to explain the formation of spiral arms and of all types of outer rings in barred galaxies. We have extended and applied the technique used in celestial mechanics to compute transfer orbits. Thus, our theory is based on the ch
One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a gal
Spitzer Space Telescope observations of 15 spiral galaxies show numerous dense cores at 8 microns that are revealed primarily in unsharp mask images. The cores are generally invisible in optical bands because of extinction, and they are also indistin
Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narr