ترغب بنشر مسار تعليمي؟ اضغط هنا

Birational rigidity of complete intersections

120   0   0.0 ( 0 )
 نشر من قبل Fumiaki Suzuki
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Fumiaki Suzuki




اسأل ChatGPT حول البحث

We prove that every smooth complete intersection X defined by s hypersurfaces of degree d_1, ... , d_s in a projective space of dimension d_1 + ... + d_s is birationally superrigid if 5s +1 is at most 2(d_1 + ... + d_s + 1)/sqrt{d_1...d_s}. In particular, X is non-rational and Bir(X)=Aut(X). We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex.



قيم البحث

اقرأ أيضاً

We provide enumerative formulas for the degrees of varieties parameterizing hypersurfaces and complete intersections which contain pro-jective subspaces and conics. Besides, we find all cases where the Fano scheme of the general complete intersection is irregular of dimension at least 2, and for the Fano surfaces we deduce formulas for their holomorphic Euler characteristic.
We count the number of conics through two general points in complete intersections when this number is finite and give an application in terms of quasi-lines.
We find at least 527 new four-dimensional Fano manifolds, each of which is a complete intersection in a smooth toric Fano manifold.
232 - Lev A. Borisov , Zhan Li 2014
We prove birational boundedness results on complete intersections with trivial canonical class of base point free divisors in (some version of) Fano varieties. Our results imply in particular that Batyrev-Borisov toric construction produces only a bo unded set of Hodge numbers in any given dimension, even as the codimension is allowed to grow.
Let X and Y be K-equivalent toric Deligne-Mumford stacks related by a single toric wall-crossing. We prove the Crepant Transformation Conjecture in this case, fully-equivariantly and in genus zero. That is, we show that the equivariant quantum connec tions for X and Y become gauge-equivalent after analytic continuation in quantum parameters. Furthermore we identify the gauge transformation involved, which can be thought of as a linear symplectomorphism between the Givental spaces for X and Y, with a Fourier-Mukai transformation between the K-groups of X and Y, via an equivariant version of the Gamma-integral structure on quantum cohomology. We prove similar results for toric complete intersections. We impose only very weak geometric hypotheses on X and Y: they can be non-compact, for example, and need not be weak Fano or have Gorenstein coarse moduli space. Our main tools are the Mirror Theorems for toric Deligne-Mumford stacks and toric complete intersections, and the Mellin-Barnes method for analytic continuation of hypergeometric functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا