ﻻ يوجد ملخص باللغة العربية
We prove that every smooth complete intersection X defined by s hypersurfaces of degree d_1, ... , d_s in a projective space of dimension d_1 + ... + d_s is birationally superrigid if 5s +1 is at most 2(d_1 + ... + d_s + 1)/sqrt{d_1...d_s}. In particular, X is non-rational and Bir(X)=Aut(X). We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex.
We provide enumerative formulas for the degrees of varieties parameterizing hypersurfaces and complete intersections which contain pro-jective subspaces and conics. Besides, we find all cases where the Fano scheme of the general complete intersection
We count the number of conics through two general points in complete intersections when this number is finite and give an application in terms of quasi-lines.
We find at least 527 new four-dimensional Fano manifolds, each of which is a complete intersection in a smooth toric Fano manifold.
We prove birational boundedness results on complete intersections with trivial canonical class of base point free divisors in (some version of) Fano varieties. Our results imply in particular that Batyrev-Borisov toric construction produces only a bo
Let X and Y be K-equivalent toric Deligne-Mumford stacks related by a single toric wall-crossing. We prove the Crepant Transformation Conjecture in this case, fully-equivariantly and in genus zero. That is, we show that the equivariant quantum connec