ترغب بنشر مسار تعليمي؟ اضغط هنا

Robustness of scale-free networks to cascading failures induced by fluctuating loads

157   0   0.0 ( 0 )
 نشر من قبل Kousuke Yakubo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Taking into account the fact that overload failures in real-world functional networks are usually caused by extreme values of temporally fluctuating loads that exceed the allowable range, we study the robustness of scale-free networks against cascading overload failures induced by fluctuating loads. In our model, loads are described by random walkers moving on a network and a node fails when the number of walkers on the node is beyond the node capacity. Our results obtained by using the generating function method shows that scale-free networks are more robust against cascading overload failures than ErdH{o}s-Renyi random graphs with homogeneous degree distributions. This conclusion is contrary to that predicted by previous works which neglect the effect of fluctuations of loads.



قيم البحث

اقرأ أيضاً

Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geomet ric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.
In todays global economy, supply chain (SC) entities have become increasingly interconnected with demand and supply relationships due to the need for strategic outsourcing. Such interdependence among firms not only increases efficiency but also creat es more vulnerabilities in the system. Natural and human-made disasters such as floods and transport accidents may halt operations and lead to economic losses. Due to the interdependence among firms, the adverse effects of any disruption can be amplified and spread throughout the systems. This paper aims at studying the robustness of SC networks against cascading failures. Considering the upper and lower bound load constraints, i.e., inventory and cost, we examine the fraction of failed entities under load decrease and load fluctuation scenarios. The simulation results obtained from synthetic networks and a European supply chain network [1] both confirm that the recovery strategies of surplus inventory and backup suppliers often adopted in actual SCs can enhance the system robustness, compared with the system without the recovery process. In addition, the system is relatively robust against load fluctuations but is more fragile to demand shocks. For the underload-driven model without the recovery process, we found an occurrence of a discontinuous phase transition. Differently from other systems studied under overload cascading failures, this system is more robust for power-law distributions than uniform distributions of the lower bound parameter for the studied scenarios.
Networks with a scale-free degree distribution are widely thought to promote cooperation in various games. Herein, by studying the well-known prisoners dilemma game, we demonstrate that this need not necessarily be true. For the very same degree sequ ence and degree distribution, we present a variety of possible behaviour. We reassess the perceived importance of hubs in a network towards the maintenance of cooperation. We also reevaluate the dependence of cooperation on network clustering and assortativity.
Cascading failure is a potentially devastating process that spreads on real-world complex networks and can impact the integrity of wide-ranging infrastructures, natural systems, and societal cohesiveness. One of the essential features that create com plex network vulnerability to failure propagation is the dependency among their components, exposing entire systems to significant risks from destabilizing hazards such as human attacks, natural disasters or internal breakdowns. Developing realistic models for cascading failures as well as strategies to halt and mitigate the failure propagation can point to new approaches to restoring and strengthening real-world networks. In this review, we summarize recent progress on models developed based on physics and complex network science to understand the mechanisms, dynamics and overall impact of cascading failures. We present models for cascading failures in single networks and interdependent networks and explain how different dynamic propagation mechanisms can lead to an abrupt collapse and a rich dynamic behavior. Finally, we close the review with novel emerging strategies for containing cascades of failures and discuss open questions that remain to be addressed.
We give an intuitive though general explanation of the finite-size effect in scale-free networks in terms of the degree distribution of the starting network. This result clarifies the relevance of the starting network in the final degree distribution . We use two different approaches: the deterministic mean-field approximation used by Barabasi and Albert (but taking into account the nodes of the starting network), and the probability distribution of the degree of each node, which considers the stochastic process. Numerical simulations show that the accuracy of the predictions of the mean-field approximation depend on the contribution of the dispersion in the final distribution. The results in terms of the probability distribution of the degree of each node are very accurate when compared to numerical simulations. The analysis of the standard deviation of the degree distribution allows us to assess the influence of the starting core when fitting the model to real data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا