ﻻ يوجد ملخص باللغة العربية
In the initial stage of relativistic heavy-ion collisions, strong magnetic fields appear due to the large velocity of the colliding charges. The evolution of these fields appears as a novel and intriguing feature in the fluid-dynamical description of heavy-ion collisions. In this work, we study analytically the one-dimensional, longitudinally boost-invariant motion of an ideal fluid in the presence of a transverse magnetic field. Interestingly, we find that, in the limit of ideal magnetohydrodynamics, i.e., for infinite conductivity, and irrespective of the strength of the initial magnetization, the decay of the fluid energy density $e$ with proper time $tau$ is the same as for the time-honored Bjorken flow without magnetic field. Furthermore, when the magnetic field is assumed to decay $sim tau^{-a}$, where $a$ is an arbitrary number, two classes of analytic solutions can be found depending on whether $a$ is larger or smaller than one. In summary, the analytic solutions presented here highlight that the Bjorken flow is far more general than formerly thought. These solutions can serve both to gain insight on the dynamics of heavy-ion collisions in the presence of strong magnetic fields and as testbeds for numerical codes.
We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function of proper time $tau$ in the presenc
We prove the stability of the critical hypersurfaces associated with the three-dimensional general relativistic Poynting-Robertson effect. The equatorial ring configures to be as a stable attractor and the whole critical hypersurface as a basin of at
We show that a Bjorken expanding strongly coupled $mathcal{N}=4$ Supersymmetric Yang-Mills plasma can violate the dominant and also the weak energy condition in its approach to hydrodynamics (even though the chosen initial data satisfy these constrai
Here we derive the relativistic resistive dissipative second-order magnetohydrodynamic evolution equations using the Boltzmann equation, thus extending our work from the previous paper href{https://link.springer.com/article/10.1007/JHEP03(2021)216}{J
We study relativistic anyon field theory in 1+1 dimensions. While (2+1)-dimensional anyon fields are equivalent to boson or fermion fields coupled with the Chern-Simons gauge fields, (1+1)-dimensional anyon fields are equivalent to boson or fermion f